lemonaddie commited on
Commit
9582ec0
·
verified ·
1 Parent(s): 0d89806

Update app2.py

Browse files
Files changed (1) hide show
  1. app2.py +26 -11
app2.py CHANGED
@@ -45,7 +45,22 @@ import torchvision.transforms.functional as TF
45
  from torchvision.transforms import InterpolationMode
46
 
47
  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
48
- pipe = DepthNormalEstimationPipeline.from_pretrained(CHECKPOINT)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
49
 
50
  try:
51
  import xformers
@@ -61,7 +76,7 @@ def depth_normal(img,
61
  denoising_steps,
62
  ensemble_size,
63
  processing_res,
64
- guidance_scale,
65
  domain):
66
 
67
  #img = img.resize((processing_res, processing_res), Image.Resampling.LANCZOS)
@@ -71,7 +86,7 @@ def depth_normal(img,
71
  ensemble_size=ensemble_size,
72
  processing_res=processing_res,
73
  batch_size=0,
74
- guidance_scale=guidance_scale,
75
  domain=domain,
76
  show_progress_bar=True,
77
  )
@@ -135,13 +150,13 @@ def run_demo():
135
  label="Data Type (Must Select One matches your image)",
136
  value="indoor",
137
  )
138
- guidance_scale = gr.Slider(
139
- label="Classifier Free Guidance Scale",
140
- minimum=1,
141
- maximum=5,
142
- step=1,
143
- value=3,
144
- )
145
  denoising_steps = gr.Slider(
146
  label="Number of denoising steps (More stepes, better quality)",
147
  minimum=1,
@@ -178,7 +193,7 @@ def run_demo():
178
  inputs=[input_image, denoising_steps,
179
  ensemble_size,
180
  processing_res,
181
- guidance_scale,
182
  domain],
183
  outputs=[depth, normal]
184
  )
 
45
  from torchvision.transforms import InterpolationMode
46
 
47
  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
48
+ #pipe = DepthNormalEstimationPipeline.from_pretrained(CHECKPOINT)
49
+
50
+ stable_diffusion_repo_path = '.'
51
+ vae = AutoencoderKL.from_pretrained(stable_diffusion_repo_path, subfolder='vae')
52
+ scheduler = DDIMScheduler.from_pretrained(stable_diffusion_repo_path, subfolder='scheduler')
53
+ sd_image_variations_diffusers_path = '.'
54
+ image_encoder = CLIPVisionModelWithProjection.from_pretrained(sd_image_variations_diffusers_path, subfolder="image_encoder")
55
+ feature_extractor = CLIPImageProcessor.from_pretrained(sd_image_variations_diffusers_path, subfolder="feature_extractor")
56
+
57
+ unet = UNet2DConditionModel.from_pretrained('tbd')
58
+
59
+ pipe = DepthNormalEstimationPipeline(vae=vae,
60
+ image_encoder=image_encoder,
61
+ feature_extractor=feature_extractor,
62
+ unet=unet,
63
+ scheduler=scheduler)
64
 
65
  try:
66
  import xformers
 
76
  denoising_steps,
77
  ensemble_size,
78
  processing_res,
79
+ #guidance_scale,
80
  domain):
81
 
82
  #img = img.resize((processing_res, processing_res), Image.Resampling.LANCZOS)
 
86
  ensemble_size=ensemble_size,
87
  processing_res=processing_res,
88
  batch_size=0,
89
+ #guidance_scale=guidance_scale,
90
  domain=domain,
91
  show_progress_bar=True,
92
  )
 
150
  label="Data Type (Must Select One matches your image)",
151
  value="indoor",
152
  )
153
+ # guidance_scale = gr.Slider(
154
+ # label="Classifier Free Guidance Scale",
155
+ # minimum=1,
156
+ # maximum=5,
157
+ # step=1,
158
+ # value=3,
159
+ # )
160
  denoising_steps = gr.Slider(
161
  label="Number of denoising steps (More stepes, better quality)",
162
  minimum=1,
 
193
  inputs=[input_image, denoising_steps,
194
  ensemble_size,
195
  processing_res,
196
+ #guidance_scale,
197
  domain],
198
  outputs=[depth, normal]
199
  )