Spaces:
Runtime error
Runtime error
lemonaddie
commited on
Update app2.py
Browse files
app2.py
CHANGED
@@ -45,7 +45,22 @@ import torchvision.transforms.functional as TF
|
|
45 |
from torchvision.transforms import InterpolationMode
|
46 |
|
47 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
48 |
-
pipe = DepthNormalEstimationPipeline.from_pretrained(CHECKPOINT)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
|
50 |
try:
|
51 |
import xformers
|
@@ -61,7 +76,7 @@ def depth_normal(img,
|
|
61 |
denoising_steps,
|
62 |
ensemble_size,
|
63 |
processing_res,
|
64 |
-
guidance_scale,
|
65 |
domain):
|
66 |
|
67 |
#img = img.resize((processing_res, processing_res), Image.Resampling.LANCZOS)
|
@@ -71,7 +86,7 @@ def depth_normal(img,
|
|
71 |
ensemble_size=ensemble_size,
|
72 |
processing_res=processing_res,
|
73 |
batch_size=0,
|
74 |
-
guidance_scale=guidance_scale,
|
75 |
domain=domain,
|
76 |
show_progress_bar=True,
|
77 |
)
|
@@ -135,13 +150,13 @@ def run_demo():
|
|
135 |
label="Data Type (Must Select One matches your image)",
|
136 |
value="indoor",
|
137 |
)
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
)
|
145 |
denoising_steps = gr.Slider(
|
146 |
label="Number of denoising steps (More stepes, better quality)",
|
147 |
minimum=1,
|
@@ -178,7 +193,7 @@ def run_demo():
|
|
178 |
inputs=[input_image, denoising_steps,
|
179 |
ensemble_size,
|
180 |
processing_res,
|
181 |
-
guidance_scale,
|
182 |
domain],
|
183 |
outputs=[depth, normal]
|
184 |
)
|
|
|
45 |
from torchvision.transforms import InterpolationMode
|
46 |
|
47 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
48 |
+
#pipe = DepthNormalEstimationPipeline.from_pretrained(CHECKPOINT)
|
49 |
+
|
50 |
+
stable_diffusion_repo_path = '.'
|
51 |
+
vae = AutoencoderKL.from_pretrained(stable_diffusion_repo_path, subfolder='vae')
|
52 |
+
scheduler = DDIMScheduler.from_pretrained(stable_diffusion_repo_path, subfolder='scheduler')
|
53 |
+
sd_image_variations_diffusers_path = '.'
|
54 |
+
image_encoder = CLIPVisionModelWithProjection.from_pretrained(sd_image_variations_diffusers_path, subfolder="image_encoder")
|
55 |
+
feature_extractor = CLIPImageProcessor.from_pretrained(sd_image_variations_diffusers_path, subfolder="feature_extractor")
|
56 |
+
|
57 |
+
unet = UNet2DConditionModel.from_pretrained('tbd')
|
58 |
+
|
59 |
+
pipe = DepthNormalEstimationPipeline(vae=vae,
|
60 |
+
image_encoder=image_encoder,
|
61 |
+
feature_extractor=feature_extractor,
|
62 |
+
unet=unet,
|
63 |
+
scheduler=scheduler)
|
64 |
|
65 |
try:
|
66 |
import xformers
|
|
|
76 |
denoising_steps,
|
77 |
ensemble_size,
|
78 |
processing_res,
|
79 |
+
#guidance_scale,
|
80 |
domain):
|
81 |
|
82 |
#img = img.resize((processing_res, processing_res), Image.Resampling.LANCZOS)
|
|
|
86 |
ensemble_size=ensemble_size,
|
87 |
processing_res=processing_res,
|
88 |
batch_size=0,
|
89 |
+
#guidance_scale=guidance_scale,
|
90 |
domain=domain,
|
91 |
show_progress_bar=True,
|
92 |
)
|
|
|
150 |
label="Data Type (Must Select One matches your image)",
|
151 |
value="indoor",
|
152 |
)
|
153 |
+
# guidance_scale = gr.Slider(
|
154 |
+
# label="Classifier Free Guidance Scale",
|
155 |
+
# minimum=1,
|
156 |
+
# maximum=5,
|
157 |
+
# step=1,
|
158 |
+
# value=3,
|
159 |
+
# )
|
160 |
denoising_steps = gr.Slider(
|
161 |
label="Number of denoising steps (More stepes, better quality)",
|
162 |
minimum=1,
|
|
|
193 |
inputs=[input_image, denoising_steps,
|
194 |
ensemble_size,
|
195 |
processing_res,
|
196 |
+
#guidance_scale,
|
197 |
domain],
|
198 |
outputs=[depth, normal]
|
199 |
)
|