Spaces:
Runtime error
Runtime error
Hugging Face's logo | |
Hugging Face | |
Search models, datasets, users... | |
Models | |
Datasets | |
Resources | |
Solutions | |
Pricing | |
Space: | |
Flax Community's picture | |
flax-community | |
/ | |
papuGaPT2 Copied | |
Runtime error | |
App | |
Files and versions | |
Settings | |
papuGaPT2 | |
/ | |
app.py | |
miwojc's picture | |
miwojc | |
Update app.py | |
d4fb97b | |
2 minutes ago | |
raw | |
history | |
blame | |
edit | |
3,870 Bytes | |
import json | |
import random | |
import requests | |
from mtranslate import translate | |
import streamlit as st | |
MODEL_URL = "https://api-inference.huggingface.co/models/flax-community/papuGaPT2" | |
PROMPT_LIST = { | |
"Najsmaczniejszy owoc to...": ["Najsmaczniejszy owoc to "], | |
"Cześć, mam na imię...": ["Cześć, mam na imię "], | |
"Największym polskim poetą był...": ["Największym polskim poetą był "], | |
} | |
def query(payload, model_url): | |
data = json.dumps(payload) | |
print("model url:", model_url) | |
response = requests.request( | |
"POST", model_url, headers={}, data=data | |
) | |
return json.loads(response.content.decode("utf-8")) | |
def process( | |
text: str, model_name: str, max_len: int, temp: float, top_k: int, top_p: float | |
): | |
payload = { | |
"inputs": text, | |
"parameters": { | |
"max_new_tokens": max_len, | |
"top_k": top_k, | |
"top_p": top_p, | |
"temperature": temp, | |
"repetition_penalty": 2.0, | |
}, | |
"options": { | |
"use_cache": True, | |
}, | |
} | |
return query(payload, model_name) | |
# Page | |
st.set_page_config(page_title="papuGaPT2 (Polish GPT-2) Demo") | |
st.title("papuGaPT2 (Polish GPT-2") | |
# Sidebar | |
st.sidebar.subheader("Configurable parameters") | |
max_len = st.sidebar.number_input( | |
"Maximum length", | |
value=100, | |
help="The maximum length of the sequence to be generated.", | |
) | |
temp = st.sidebar.slider( | |
"Temperature", | |
value=1.0, | |
min_value=0.1, | |
max_value=100.0, | |
help="The value used to module the next token probabilities.", | |
) | |
top_k = st.sidebar.number_input( | |
"Top k", | |
value=10, | |
help="The number of highest probability vocabulary tokens to keep for top-k-filtering.", | |
) | |
top_p = st.sidebar.number_input( | |
"Top p", | |
value=0.95, | |
help=" If set to float < 1, only the most probable tokens with probabilities that add up to top_p or higher are kept for generation.", | |
) | |
do_sample = st.sidebar.selectbox( | |
"Sampling?", | |
(True, False), | |
help="Whether or not to use sampling; use greedy decoding otherwise.", | |
) | |
# Body | |
st.markdown( | |
""" | |
papuGaPT2 (Polish GPT-2) model trained from scratch on OSCAR dataset. | |
The models were trained with Jax and Flax using TPUs as part of the [Flax/Jax Community Week](https://discuss.huggingface.co/t/open-to-the-community-community-week-using-jax-flax-for-nlp-cv/7104) organised by HuggingFace. | |
""" | |
) | |
model_name = MODEL_URL | |
ALL_PROMPTS = list(PROMPT_LIST.keys()) + ["Custom"] | |
prompt = st.selectbox("Prompt", ALL_PROMPTS, index=len(ALL_PROMPTS) - 1) | |
if prompt == "Custom": | |
prompt_box = "Enter your text here" | |
else: | |
prompt_box = random.choice(PROMPT_LIST[prompt]) | |
text = st.text_area("Enter text", prompt_box) | |
if st.button("Run"): | |
with st.spinner(text="Getting results..."): | |
st.subheader("Result") | |
print(f"maxlen:{max_len}, temp:{temp}, top_k:{top_k}, top_p:{top_p}") | |
result = process( | |
text=text, | |
model_name=model_name, | |
max_len=int(max_len), | |
temp=temp, | |
top_k=int(top_k), | |
top_p=float(top_p), | |
) | |
print("result:", result) | |
if "error" in result: | |
if type(result["error"]) is str: | |
st.write(f'{result["error"]}.', end=" ") | |
if "estimated_time" in result: | |
st.write( | |
f'Please try again in about {result["estimated_time"]:.0f} seconds.' | |
) | |
else: | |
if type(result["error"]) is list: | |
for error in result["error"]: | |
st.write(f"{error}") | |
else: | |
result = result[0]["generated_text"] | |
st.write(result.replace("\ | |
", " \ | |
")) | |
st.text("English translation") | |
st.write(translate(result, "en", "es").replace("\ | |
", " \ | |
")) | |