grg's picture
Cleaned old git history
be5548b
import numpy as np
from gym_minigrid.minigrid import *
from gym_minigrid.register import register
import time
from collections import deque
class TeacherPeer(NPC):
"""
A dancing NPC that the agent has to copy
"""
def __init__(self, color, name, env, npc_type=0, knowledgeable=False, easier=False, idl=False):
super().__init__(color)
self.name = name
self.npc_dir = 1 # NPC initially looks downward
self.npc_type = npc_type
self.env = env
self.knowledgeable = knowledgeable
self.npc_actions = []
self.dancing_step_idx = 0
self.actions = MiniGridEnv.Actions
self.add_npc_direction = True
self.available_moves = [self.rotate_left, self.rotate_right, self.go_forward, self.toggle_action]
self.was_introduced_to = False
self.easier = easier
assert not self.easier
self.idl = idl
self.must_eye_contact = True if (self.npc_type // 3) % 2 == 0 else False
self.wanted_intro_utterances = [
EasyTeachingGamesGrammar.construct_utterance([2, 2]),
EasyTeachingGamesGrammar.construct_utterance([0, 1])
]
self.wanted_intro_utterance = self.wanted_intro_utterances[0] if (self.npc_type // 3) // 2 == 0 else self.wanted_intro_utterances[1]
if self.npc_type % 3 == 0:
# must be far, must not poke
self.must_be_poked = False
self.must_be_close = False
elif self.npc_type % 3 == 1:
# must be close, must not poke
self.must_be_poked = False
self.must_be_close = True
elif self.npc_type % 3 == 2:
# must be close, must poke
self.must_be_poked = True
self.must_be_close = True
else:
raise ValueError("npc tyep {} unknown". format(self.npc_type))
# print("Peer type: ", self.npc_type)
# print("Peer conf: ", self.wanted_intro_utterance, self.must_eye_contact, self.must_be_close, self.must_be_poked)
if self.must_be_poked and not self.must_be_close:
raise ValueError("Must be poked means it must be close also.")
self.poked = False
self.exited = False
self.joint_attention_achieved = False
def toggle(self, env, pos):
"""Method to trigger/toggle an action this object performs"""
self.poked = True
return True
def is_introduction_state_ok(self):
if (self.must_be_poked and self.introduction_state["poked"]) or (
not self.must_be_poked and not self.introduction_state["poked"]):
if (self.must_be_close and self.introduction_state["close"]) or (
not self.must_be_close and not self.introduction_state["close"]):
if (self.must_eye_contact and self.introduction_state["eye_contact"]) or (
not self.must_eye_contact and not self.introduction_state["eye_contact"]
):
if self.introduction_state["intro_utterance"] == self.wanted_intro_utterance:
return True
return False
def can_overlap(self):
# If the NPC is hidden, agent can overlap on it
return self.env.hidden_npc
def encode(self, nb_dims=3):
if self.env.hidden_npc:
if nb_dims == 3:
return (1, 0, 0)
elif nb_dims == 4:
return (1, 0, 0, 0)
else:
return super().encode(nb_dims=nb_dims)
def step(self, agent_utterance):
super().step()
if self.knowledgeable:
if self.easier:
raise DeprecationWarning()
# wanted_dir = self.compute_wanted_dir(self.env.agent_pos)
# action = self.compute_turn_action(wanted_dir)
# action()
# if not self.was_introduced_to and (agent_utterance in self.wanted_intro_utterances):
# self.was_introduced_to = True
# self.introduction_state = {
# "poked": self.poked,
# "close": self.is_near_agent(),
# "eye_contact": self.is_eye_contact(),
# "correct_intro_utterance": agent_utterance == self.wanted_intro_utterance
# }
# if self.is_introduction_state_ok():
# utterance = "Go to the {} door \n".format(self.env.target_color)
# return utterance
else:
wanted_dir = self.compute_wanted_dir(self.env.agent_pos)
action = self.compute_turn_action(wanted_dir)
action()
if not self.was_introduced_to and (agent_utterance in self.wanted_intro_utterances):
self.was_introduced_to = True
self.introduction_state = {
"poked": self.poked,
"close": self.is_near_agent(),
"eye_contact": self.is_eye_contact(),
"intro_utterance": agent_utterance,
}
if not self.is_introduction_state_ok():
if self.idl:
if self.env.hidden_npc:
return None
else:
return "I don't like that \n"
else:
return None
if self.is_eye_contact() and self.was_introduced_to:
if self.is_introduction_state_ok():
utterance = "Go to the {} door \n".format(self.env.target_color)
if self.env.hidden_npc:
return None
else:
return utterance
else:
# no utterance
return None
else:
self.env._rand_elem(self.available_moves)()
return None
def render(self, img):
c = COLORS[self.color]
npc_shapes = []
# Draw eyes
if self.npc_type % 3 == 0:
npc_shapes.append(point_in_circle(cx=0.70, cy=0.50, r=0.10))
npc_shapes.append(point_in_circle(cx=0.30, cy=0.50, r=0.10))
# Draw mouth
npc_shapes.append(point_in_rect(0.20, 0.80, 0.72, 0.81))
# Draw top hat
npc_shapes.append(point_in_rect(0.30, 0.70, 0.05, 0.28))
elif self.npc_type % 3 == 1:
npc_shapes.append(point_in_circle(cx=0.70, cy=0.50, r=0.10))
npc_shapes.append(point_in_circle(cx=0.30, cy=0.50, r=0.10))
# Draw mouth
npc_shapes.append(point_in_rect(0.20, 0.80, 0.72, 0.81))
# Draw bottom hat
npc_shapes.append(point_in_triangle((0.15, 0.28),
(0.85, 0.28),
(0.50, 0.05)))
elif self.npc_type % 3 == 2:
npc_shapes.append(point_in_circle(cx=0.70, cy=0.50, r=0.10))
npc_shapes.append(point_in_circle(cx=0.30, cy=0.50, r=0.10))
# Draw mouth
npc_shapes.append(point_in_rect(0.20, 0.80, 0.72, 0.81))
# Draw bottom hat
npc_shapes.append(point_in_triangle((0.15, 0.28),
(0.85, 0.28),
(0.50, 0.05)))
# Draw top hat
npc_shapes.append(point_in_rect(0.30, 0.70, 0.05, 0.28))
# todo: move this to super function
# todo: super.render should be able to take the npc_shapes and then rotate them
if hasattr(self, "npc_dir"):
# Pre-rotation to ensure npc_dir = 1 means NPC looks downwards
npc_shapes = [rotate_fn(v, cx=0.5, cy=0.5, theta=-1 * (math.pi / 2)) for v in npc_shapes]
# Rotate npc based on its direction
npc_shapes = [rotate_fn(v, cx=0.5, cy=0.5, theta=(math.pi / 2) * self.npc_dir) for v in npc_shapes]
# Draw shapes
for v in npc_shapes:
fill_coords(img, v, c)
# class EasyTeachingGamesSmallGrammar(object):
#
# templates = ["Where is", "Open", "What is"]
# things = ["sesame", "the exit", "the password"]
#
# grammar_action_space = spaces.MultiDiscrete([len(templates), len(things)])
#
# @classmethod
# def construct_utterance(cls, action):
# if all(np.isnan(action)):
# return ""
# return cls.templates[int(action[0])] + " " + cls.things[int(action[1])] + " "
class EasyTeachingGamesGrammar(object):
templates = ["Where is", "Open", "Which is", "How are"]
things = [
"sesame", "the exit", "the correct door", "you", "the ceiling", "the window", "the entrance", "the closet",
"the drawer", "the fridge", "the floor", "the lamp", "the trash can", "the chair", "the bed", "the sofa"
]
grammar_action_space = spaces.MultiDiscrete([len(templates), len(things)])
@classmethod
def construct_utterance(cls, action):
if all(np.isnan(action)):
return ""
return cls.templates[int(action[0])] + " " + cls.things[int(action[1])] + " "
class EasyTeachingGamesEnv(MultiModalMiniGridEnv):
"""
Environment in which the agent is instructed to go to a given object
named using an English text string
"""
def __init__(
self,
size=5,
diminished_reward=True,
step_penalty=False,
knowledgeable=False,
hard_password=False,
max_steps=50,
n_switches=3,
peer_type=None,
no_turn_off=False,
easier=False,
idl=False,
hidden_npc = False,
):
assert size >= 5
self.empty_symbol = "NA \n"
self.diminished_reward = diminished_reward
self.step_penalty = step_penalty
self.knowledgeable = knowledgeable
self.hard_password = hard_password
self.n_switches = n_switches
self.peer_type = peer_type
self.no_turn_off = no_turn_off
self.easier = easier
self.idl = idl
self.hidden_npc = hidden_npc
super().__init__(
grid_size=size,
max_steps=max_steps,
# Set this to True for maximum speed
see_through_walls=True,
actions=MiniGridEnv.Actions,
action_space=spaces.MultiDiscrete([
len(MiniGridEnv.Actions),
*EasyTeachingGamesGrammar.grammar_action_space.nvec
]),
add_npc_direction=True
)
print({
"size": size,
"diminished_reward": diminished_reward,
"step_penalty": step_penalty,
})
def _gen_grid(self, width, height):
# Create the grid
self.grid = Grid(width, height, nb_obj_dims=4)
# Randomly vary the room width and height
width = self._rand_int(5, width+1)
height = self._rand_int(5, height+1)
self.wall_x = width - 1
self.wall_y = height - 1
# Generate the surrounding walls
self.grid.wall_rect(0, 0, width, height)
self.door_pos = []
self.door_front_pos = [] # Remembers positions in front of door to avoid setting wizard here
self.door_pos.append((self._rand_int(2, width-2), 0))
self.door_front_pos.append((self.door_pos[-1][0], self.door_pos[-1][1]+1))
self.door_pos.append((self._rand_int(2, width-2), height-1))
self.door_front_pos.append((self.door_pos[-1][0], self.door_pos[-1][1] - 1))
self.door_pos.append((0, self._rand_int(2, height-2)))
self.door_front_pos.append((self.door_pos[-1][0] + 1, self.door_pos[-1][1]))
self.door_pos.append((width-1, self._rand_int(2, height-2)))
self.door_front_pos.append((self.door_pos[-1][0] - 1, self.door_pos[-1][1]))
# Generate the door colors
self.door_colors = []
while len(self.door_colors) < len(self.door_pos):
color = self._rand_elem(COLOR_NAMES)
if color in self.door_colors:
continue
self.door_colors.append(color)
# Place the doors in the grid
for idx, pos in enumerate(self.door_pos):
color = self.door_colors[idx]
self.grid.set(*pos, Door(color))
# Select a random target door
self.doorIdx = self._rand_int(0, len(self.door_pos))
self.target_pos = self.door_pos[self.doorIdx]
self.target_color = self.door_colors[self.doorIdx]
# Set a randomly coloured Dancer NPC
color = self._rand_elem(COLOR_NAMES)
if self.peer_type is None:
self.current_peer_type = self._rand_int(0, 12)
else:
self.current_peer_type = self.peer_type
self.peer = TeacherPeer(
color,
["Bobby", "Robby", "Toby"][self.current_peer_type % 3],
self,
knowledgeable=self.knowledgeable,
npc_type=self.current_peer_type,
easier=self.easier,
idl=self.idl
)
# height -2 so its not in front of the buttons in the way
while True:
peer_pos = np.array((self._rand_int(1, width - 1), self._rand_int(1, height - 2)))
if (
# not in front of any door
not tuple(peer_pos) in self.door_front_pos
) and (
# no_close npc is not in the middle of the 5x5 env
not (not self.peer.must_be_close and (width == 5 and height == 5) and all(peer_pos == (2, 2)))
):
break
self.grid.set(*peer_pos, self.peer)
self.peer.init_pos = peer_pos
self.peer.cur_pos = peer_pos
# Randomize the agent's start position and orientation
self.place_agent(size=(width, height))
# Generate the mission string
self.mission = 'exit the room'
# Dummy beginning string
self.beginning_string = "This is what you hear. \n"
self.utterance = self.beginning_string
# utterance appended at the end of each step
self.utterance_history = ""
# used for rendering
self.conversation = self.utterance
self.outcome_info = None
def step(self, action):
p_action = action[0]
utterance_action = action[1:]
obs, reward, done, info = super().step(p_action)
if p_action == self.actions.done:
done = True
peer_utterance = EasyTeachingGamesGrammar.construct_utterance(utterance_action)
peer_reply = self.peer.step(peer_utterance)
if peer_reply is not None:
self.utterance += "{}: {} \n".format(self.peer.name, peer_reply)
self.conversation += "{}: {} \n".format(self.peer.name, peer_reply)
if all(self.agent_pos == self.target_pos):
done = True
reward = self._reward()
elif tuple(self.agent_pos) in self.door_pos:
done = True
# discount
if self.step_penalty:
reward = reward - 0.01
if self.hidden_npc:
# all npc are hidden
assert np.argwhere(obs['image'][:,:,0] == OBJECT_TO_IDX['npc']).size == 0
assert "{}:".format(self.peer.name) not in self.utterance
# fill observation with text
self.append_existing_utterance_to_history()
obs = self.add_utterance_to_observation(obs)
self.reset_utterance()
if done:
if reward > 0:
self.outcome_info = "SUCCESS: agent got {} reward \n".format(np.round(reward, 1))
else:
self.outcome_info = "FAILURE: agent got {} reward \n".format(reward)
return obs, reward, done, info
def _reward(self):
if self.diminished_reward:
return super()._reward()
else:
return 1.0
def render(self, *args, **kwargs):
obs = super().render(*args, **kwargs)
self.window.clear_text() # erase previous text
self.window.set_caption(self.conversation, self.peer.name)
self.window.ax.set_title("correct door: {}".format(self.target_color), loc="left", fontsize=10)
if self.outcome_info:
color = None
if "SUCCESS" in self.outcome_info:
color = "lime"
elif "FAILURE" in self.outcome_info:
color = "red"
self.window.add_text(*(0.01, 0.85, self.outcome_info),
**{'fontsize':15, 'color':color, 'weight':"bold"})
self.window.show_img(obs) # re-draw image to add changes to window
return obs
# # must be far, must not poke
# class EasyTeachingGames8x8Env(EasyTeachingGamesEnv):
# def __init__(self):
# super().__init__(size=8, knowledgeable=True, max_steps=50, peer_type=0)
#
# # must be close, must not poke
# class EasyTeachingGamesClose8x8Env(EasyTeachingGamesEnv):
# def __init__(self):
# super().__init__(size=8, knowledgeable=True, max_steps=50, peer_type=1)
#
# # must be close, must poke
# class EasyTeachingGamesPoke8x8Env(EasyTeachingGamesEnv):
# def __init__(self):
# super().__init__(size=8, knowledgeable=True, max_steps=50, peer_type=2)
#
# # 100 multi
# class EasyTeachingGamesMulti8x8Env(EasyTeachingGamesEnv):
# def __init__(self):
# super().__init__(size=8, knowledgeable=True, max_steps=50, peer_type=None)
#
#
#
# # speaking 50 steps
# register(
# id='MiniGrid-EasyTeachingGames-8x8-v0',
# entry_point='gym_minigrid.envs:EasyTeachingGames8x8Env'
# )
#
# # demonstrating 50 steps
# register(
# id='MiniGrid-EasyTeachingGamesPoke-8x8-v0',
# entry_point='gym_minigrid.envs:EasyTeachingGamesPoke8x8Env'
# )
#
# # demonstrating 50 steps
# register(
# id='MiniGrid-EasyTeachingGamesClose-8x8-v0',
# entry_point='gym_minigrid.envs:EasyTeachingGamesClose8x8Env'
# )
#
# # speaking 50 steps
# register(
# id='MiniGrid-EasyTeachingGamesMulti-8x8-v0',
# entry_point='gym_minigrid.envs:EasyTeachingGamesMulti8x8Env'
# )
# # must be far, must not poke
# class EasierTeachingGames8x8Env(EasyTeachingGamesEnv):
# def __init__(self):
# super().__init__(size=8, knowledgeable=True, max_steps=50, peer_type=0, easier=True)
#
# # must be close, must not poke
# class EasierTeachingGamesClose8x8Env(EasyTeachingGamesEnv):
# def __init__(self):
# super().__init__(size=8, knowledgeable=True, max_steps=50, peer_type=1, easier=True)
#
# # must be close, must poke
# class EasierTeachingGamesPoke8x8Env(EasyTeachingGamesEnv):
# def __init__(self):
# super().__init__(size=8, knowledgeable=True, max_steps=50, peer_type=2, easier=True)
#
# # 100 multi
# class EasierTeachingGamesMulti8x8Env(EasyTeachingGamesEnv):
# def __init__(self):
# super().__init__(size=8, knowledgeable=True, max_steps=50, peer_type=None, easier=True)
#
# # Multi Many
# class ManyTeachingGamesMulti8x8Env(EasyTeachingGamesEnv):
# def __init__(self):
# super().__init__(size=8, knowledgeable=True, max_steps=50, peer_type=None, easier=False, many=True)
#
# class ManyTeachingGamesMultiIDL8x8Env(EasyTeachingGamesEnv):
# def __init__(self):
# super().__init__(size=8, knowledgeable=True, max_steps=50, peer_type=None, easier=False, many=True, idl=True)
# # speaking 50 steps
# register(
# id='MiniGrid-EasierTeachingGames-8x8-v0',
# entry_point='gym_minigrid.envs:EasierTeachingGames8x8Env'
# )
#
# # demonstrating 50 steps
# register(
# id='MiniGrid-EasierTeachingGamesPoke-8x8-v0',
# entry_point='gym_minigrid.envs:EasierTeachingGamesPoke8x8Env'
# )
#
# # demonstrating 50 steps
# register(
# id='MiniGrid-EasierTeachingGamesClose-8x8-v0',
# entry_point='gym_minigrid.envs:EasierTeachingGamesClose8x8Env'
# )
#
# # speaking 50 steps
# register(
# id='MiniGrid-EasierTeachingGamesMulti-8x8-v0',
# entry_point='gym_minigrid.envs:EasierTeachingGamesMulti8x8Env'
# )
#
# # speaking 50 steps
# register(
# id='MiniGrid-ManyTeachingGamesMulti-8x8-v0',
# entry_point='gym_minigrid.envs:ManyTeachingGamesMulti8x8Env'
# )
#
# # speaking 50 steps
# register(
# id='MiniGrid-ManyTeachingGamesMultiIDL-8x8-v0',
# entry_point='gym_minigrid.envs:ManyTeachingGamesMultiIDL8x8Env'
# )
# Multi Many
class DiverseExit8x8Env(EasyTeachingGamesEnv):
def __init__(self, **kwargs):
super().__init__(size=8, knowledgeable=True, max_steps=50, peer_type=None, easier=False, **kwargs)
# speaking 50 steps
register(
id='MiniGrid-DiverseExit-8x8-v0',
entry_point='gym_minigrid.envs:DiverseExit8x8Env'
)