fschwartzer commited on
Commit
0bc1a23
·
1 Parent(s): f96846f

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +10 -12
app.py CHANGED
@@ -12,19 +12,22 @@ def calculate_distance(lat1, lon1, lat2, lon2):
12
  coords_2 = (lat2, lon2)
13
  return geodesic(coords_1, coords_2).meters
14
 
15
- # Function to apply KNN and return V_oferta values
16
  def knn_predict(df, target_column, features_columns, k=5):
17
  # Separate features and target variable
18
  X = df[features_columns]
19
  y = df[target_column]
20
 
 
 
 
 
21
  # Create KNN regressor
22
  knn = KNeighborsRegressor(n_neighbors=k)
23
 
24
  # Fit the model
25
  knn.fit(X, y)
26
 
27
- # Use the model to predict V_oferta for the filtered_data
28
  predictions = knn.predict(df[features_columns])
29
 
30
  return predictions
@@ -223,23 +226,18 @@ filtered_data['Predicted_target'] = predicted_target
223
  with st.container():
224
  st.map(filtered_data, zoom=zoom_level, use_container_width=True)
225
  st.write("Dados:", filtered_data) # Debug: Print filtered_data
226
-
227
- # Set the threshold (k) for the number of data points
228
- k_threshold = 5 # Adjust the threshold as needed
229
 
230
- # Check if there is data for prediction
231
- if 'Predicted_target' in filtered_data.columns and len(filtered_data) > k_threshold:
232
- # Determine which area feature to use for prediction
233
- filtered_data['area_feature'] = np.where(filtered_data['Apriv'] != 0, filtered_data['Apriv'], filtered_data['Atotal'])
234
-
235
- # Apply KNN and get predicted Predicted_target values
236
- predicted_target = knn_predict(filtered_data, 'Predicted_target', ['latitude', 'longitude', 'area_feature']) # Update with your features
237
 
 
 
238
  # Add predicted Predicted_target values to filtered_data
239
  filtered_data['Predicted_target'] = predicted_target
240
 
241
  # Display the predicted Predicted_target values
242
  st.write("Valores (R$/m²) previstos com algoritmo KNN:")
243
  st.write(filtered_data[['Localização', 'Atotal', 'Apriv', 'Vunit_total', 'Vunit_priv', 'Predicted_target']])
 
244
  else:
245
  st.warning(f"Dados insuficientes para inferência do valor. Mínimo necessário: {k_threshold}")
 
12
  coords_2 = (lat2, lon2)
13
  return geodesic(coords_1, coords_2).meters
14
 
 
15
  def knn_predict(df, target_column, features_columns, k=5):
16
  # Separate features and target variable
17
  X = df[features_columns]
18
  y = df[target_column]
19
 
20
+ # Check if there is enough data for prediction
21
+ if len(X) < k:
22
+ return np.zeros(len(X)) # Return an array of zeros if there isn't enough data
23
+
24
  # Create KNN regressor
25
  knn = KNeighborsRegressor(n_neighbors=k)
26
 
27
  # Fit the model
28
  knn.fit(X, y)
29
 
30
+ # Use the model to predict target_column for the filtered_data
31
  predictions = knn.predict(df[features_columns])
32
 
33
  return predictions
 
226
  with st.container():
227
  st.map(filtered_data, zoom=zoom_level, use_container_width=True)
228
  st.write("Dados:", filtered_data) # Debug: Print filtered_data
 
 
 
229
 
230
+ # Apply KNN and get predicted Predicted_target values
231
+ predicted_target = knn_predict(filtered_data, 'Predicted_target', ['latitude', 'longitude', 'area_feature']) # Update with your features
 
 
 
 
 
232
 
233
+ # Check if there are predictions to display
234
+ if 'Predicted_target' in filtered_data.columns and not np.all(predicted_target == 0):
235
  # Add predicted Predicted_target values to filtered_data
236
  filtered_data['Predicted_target'] = predicted_target
237
 
238
  # Display the predicted Predicted_target values
239
  st.write("Valores (R$/m²) previstos com algoritmo KNN:")
240
  st.write(filtered_data[['Localização', 'Atotal', 'Apriv', 'Vunit_total', 'Vunit_priv', 'Predicted_target']])
241
+ else:
242
  else:
243
  st.warning(f"Dados insuficientes para inferência do valor. Mínimo necessário: {k_threshold}")