Spaces:
Sleeping
Sleeping
fschwartzer
commited on
Commit
•
f96846f
1
Parent(s):
d9189c2
Update app.py
Browse files
app.py
CHANGED
@@ -227,8 +227,18 @@ with st.container():
|
|
227 |
# Set the threshold (k) for the number of data points
|
228 |
k_threshold = 5 # Adjust the threshold as needed
|
229 |
|
230 |
-
#
|
231 |
if 'Predicted_target' in filtered_data.columns and len(filtered_data) > k_threshold:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
232 |
st.write("Valores (R$/m²) previstos com algoritmo KNN:")
|
233 |
st.write(filtered_data[['Localização', 'Atotal', 'Apriv', 'Vunit_total', 'Vunit_priv', 'Predicted_target']])
|
234 |
else:
|
|
|
227 |
# Set the threshold (k) for the number of data points
|
228 |
k_threshold = 5 # Adjust the threshold as needed
|
229 |
|
230 |
+
# Check if there is data for prediction
|
231 |
if 'Predicted_target' in filtered_data.columns and len(filtered_data) > k_threshold:
|
232 |
+
# Determine which area feature to use for prediction
|
233 |
+
filtered_data['area_feature'] = np.where(filtered_data['Apriv'] != 0, filtered_data['Apriv'], filtered_data['Atotal'])
|
234 |
+
|
235 |
+
# Apply KNN and get predicted Predicted_target values
|
236 |
+
predicted_target = knn_predict(filtered_data, 'Predicted_target', ['latitude', 'longitude', 'area_feature']) # Update with your features
|
237 |
+
|
238 |
+
# Add predicted Predicted_target values to filtered_data
|
239 |
+
filtered_data['Predicted_target'] = predicted_target
|
240 |
+
|
241 |
+
# Display the predicted Predicted_target values
|
242 |
st.write("Valores (R$/m²) previstos com algoritmo KNN:")
|
243 |
st.write(filtered_data[['Localização', 'Atotal', 'Apriv', 'Vunit_total', 'Vunit_priv', 'Predicted_target']])
|
244 |
else:
|