bens_moveis / app.py
fschwartzer's picture
Update app.py
40ac373 verified
raw
history blame
7.65 kB
import gradio as gr
import requests
import pandas as pd
from rapidfuzz import process, fuzz
bens_df = pd.read_excel('bens_tab.xlsx')
data_crawler = pd.read_csv('data_crawler.csv', index_col=False)
data_crawler = data_crawler[['Title', 'Price', 'Currency', 'Condition', 'Link', 'Marketplace']]
def fetch_data_to_dataframe(query, limit=50, source="mercadolibre"):
if source == "mercadolibre":
BASE_URL = "https://api.mercadolibre.com/sites/MLB/search"
params = {'q': query, 'limit': limit}
response = requests.get(BASE_URL, params=params)
if response.status_code == 200:
data = response.json()
items = data.get('results', [])
df = pd.DataFrame(items)[['title', 'price', 'currency_id', 'condition', 'permalink']]
df.columns = ['Title', 'Price', 'Currency', 'Condition', 'Link']
df['Marketplace'] = "Mercado Livre"
return df
return pd.DataFrame()
def refinar_resultados(df, exclude_word="conjunto", include_word=False):
df['Title'] = df['Title'].astype(str)
df_refinado = df[~df['Title'].str.contains("kit", case=False, na=False)]
df_refinado = df[~df['Title'].str.contains("Kit", case=False, na=False)]
df_refinado = df[~df['Title'].str.contains("conj", case=False, na=False)]
df_refinado = df[~df['Title'].str.contains(" e ", case=False, na=False)]
padrao_unidades = r'\b(\d+)\s*(unidade|unidades|pacote|pacotes|caixa|caixas)\b'
df_refinado = df_refinado[~df_refinado['Title'].str.contains(padrao_unidades, case=False, regex=True)]
if not include_word:
# Exclude results containing "conjunto" if it's not part of the original query
df_refinado = df_refinado[~df_refinado['Title'].str.contains(exclude_word, case=False)]
return df_refinado
def get_best_match(query, choices, limit=50):
# Using RapidFuzz for improved performance and fuzzy matching
matches = process.extract(query, choices, scorer=fuzz.WRatio, limit=limit)
return [match[0] for match in matches if match[1] > 70]
def match_query_words_in_titles(query, title):
"""
Check if all words in the query have a close match within the title.
Returns True if all words match to a certain degree; False otherwise.
"""
query_words = query.lower().split()
match_threshold = 80 # Adjust this threshold as needed
for word in query_words:
# Find the best match for each word in the query within the title
match_score = fuzz.partial_ratio(word, title.lower())
if match_score < match_threshold:
return False # If any word doesn't match well enough, return False
return True # All words matched well enough
def filtrar_itens_similares(df, termo_pesquisa, limit=50):
# Apply the match function to each title, filtering for those that match the query words
matches = df['Title'].apply(lambda title: match_query_words_in_titles(termo_pesquisa, title))
df_filtrado = df[matches]
# Further refine the list to the top N matches based on overall similarity to the query
df_filtrado['Overall_Similarity'] = df_filtrado['Title'].apply(lambda title: fuzz.WRatio(termo_pesquisa, title))
df_filtrado = df_filtrado.sort_values('Overall_Similarity', ascending=False).head(limit)
return df_filtrado
def calcular_fator_avaliacao(titulo, EC, PU):
filtered_df = bens_df[bens_df['TITULO'] == titulo]
if filtered_df.empty:
return None # Or handle the error as needed
bem_info = filtered_df.iloc[0]
VU, VR = bem_info['VIDA_UTIL'], bem_info['VALOR_RESIDUAL']
ec_pontuacao = {'Excelente': 10, 'Bom': 8, 'Regular': 5, 'Péssimo': 2}[EC]
PU, PVU, PUB = float(PU), min(10 - ((PU - 1) * (10 / VU)), 10), min(10 - (((VU - PU) - 1) * (10 / VU)), 10)
fator_avaliacao = max((4 * ec_pontuacao + 6 * PVU - 3 * PUB) / 100, VR)
return fator_avaliacao
def select_nearest_items(df, query):
# Lower the title similarity threshold if necessary
df['Title_Similarity'] = df['Title'].apply(lambda x: fuzz.WRatio(query, x))
df_filtered = df[df['Title_Similarity'] > 70] # Adjusted threshold
# Calculate mode price in a more inclusive manner
mode_price = df_filtered['Price'].mode()
if mode_price.empty:
target_price = df_filtered['Price'].median()
else:
target_price = mode_price.min()
df_filtered['Distance'] = (df_filtered['Price'] - target_price).abs()
df_sorted = df_filtered.sort_values(['Distance', 'Title_Similarity'], ascending=[True, False])
# Ensure diversity in marketplaces
marketplaces_selected = set()
results = []
for _, row in df_sorted.iterrows():
if row['Marketplace'] not in marketplaces_selected and len(marketplaces_selected) < 5:
results.append(row)
marketplaces_selected.add(row['Marketplace'])
if len(results) >= 5:
break
return pd.DataFrame(results)
def search_with_fallback(query, df, limit=50):
query_parts = query.split()
include_conjunto = "conjunto" in query.lower()
for i in range(len(query_parts), 0, -1):
simplified_query = " ".join(query_parts[:i])
df_refinado = refinar_resultados(df, include_word=include_conjunto)
df_filtrado = filtrar_itens_similares(df_refinado, simplified_query, limit=limit)
if not df_filtrado.empty:
return df_filtrado
return pd.DataFrame()
def integrated_app(query, titulo, EC, PU):
df_mercadolibre = fetch_data_to_dataframe(query, 50, "mercadolibre")
print(df_mercadolibre)
df_combined = pd.concat([df_mercadolibre, data_crawler], ignore_index=True)
print(df_combined)
if df_combined.empty:
return "Nenhum dado encontrado. Tente uma consulta diferente.", pd.DataFrame()
# Pass whether "conjunto" is part of the original query
include_conjunto = "conjunto" in query.lower()
df_refined = refinar_resultados(df_combined, include_word=include_conjunto)
df_similares = search_with_fallback(query, df_refined)
if df_similares.empty:
return "Nenhum item similar encontrado.", pd.DataFrame()
df_nearest = select_nearest_items(df_similares, query)
if df_nearest.empty:
return "Nenhum resultado próximo encontrado.", pd.DataFrame()
fator_avaliacao = calcular_fator_avaliacao(titulo, EC, PU)
valor_avaliacao = df_nearest['Price'].mean() * fator_avaliacao
return f"Valor Médio do Bem: R$ {df_nearest['Price'].mean():.2f}, Fator de Avaliação: {fator_avaliacao*100:.2f}%, Valor de Avaliação: R$ {valor_avaliacao:.2f}", df_nearest
iface = gr.Interface(fn=integrated_app,
inputs=[gr.Textbox(label="Digite sua consulta"),
gr.Dropdown(label="Classificação Contábil do Bem", choices=bens_df['TITULO'].unique().tolist(), value="MOBILIÁRIO EM GERAL"),
gr.Radio(label="Estado de Conservação do Bem", choices=['Excelente', 'Bom', 'Regular', 'Péssimo'], value="Excelente"),
gr.Number(label="Período utilizado (anos)", value=1)],
outputs=[gr.Textbox(label="Cálculo"), gr.Dataframe(label="Resultados da Pesquisa")],
theme=gr.themes.Monochrome(),
title="<span style='color: gray; font-size: 48px;'>Avaliação de Bens Móveis</span>",
description="""<p style="text-align: left;"><b><span style='color: gray; font-size: 40px;'>aval</span><span style='color: black; font-size: 40px;'>ia</span><span style='color: gray; font-size: 40px;'>.se</b></p>""")
iface.launch()