Spaces:
Sleeping
Sleeping
import gradio as gr | |
import requests | |
import pandas as pd | |
from rapidfuzz import process, fuzz | |
bens_df = pd.read_excel('bens_tab.xlsx') | |
data_crawler = pd.read_csv('data_crawler.csv', index_col=False) | |
data_crawler = data_crawler[['Title', 'Price', 'Currency', 'Condition', 'Link', 'Marketplace']] | |
def fetch_data_to_dataframe(query, limit=50, source="mercadolibre"): | |
if source == "mercadolibre": | |
BASE_URL = "https://api.mercadolibre.com/sites/MLB/search" | |
params = {'q': query, 'limit': limit} | |
response = requests.get(BASE_URL, params=params) | |
if response.status_code == 200: | |
data = response.json() | |
items = data.get('results', []) | |
df = pd.DataFrame(items)[['title', 'price', 'currency_id', 'condition', 'permalink']] | |
df.columns = ['Title', 'Price', 'Currency', 'Condition', 'Link'] | |
df['Marketplace'] = "Mercado Livre" | |
return df | |
return pd.DataFrame() | |
def refinar_resultados(df, exclude_word="conjunto", include_word=False): | |
df['Title'] = df['Title'].astype(str) | |
df_refinado = df[~df['Title'].str.contains("kit", case=False, na=False)] | |
df_refinado = df[~df['Title'].str.contains("Kit", case=False, na=False)] | |
df_refinado = df[~df['Title'].str.contains("conj", case=False, na=False)] | |
df_refinado = df[~df['Title'].str.contains(" e ", case=False, na=False)] | |
padrao_unidades = r'\b(\d+)\s*(unidade|unidades|pacote|pacotes|caixa|caixas)\b' | |
df_refinado = df_refinado[~df_refinado['Title'].str.contains(padrao_unidades, case=False, regex=True)] | |
if not include_word: | |
# Exclude results containing "conjunto" if it's not part of the original query | |
df_refinado = df_refinado[~df_refinado['Title'].str.contains(exclude_word, case=False)] | |
return df_refinado | |
def get_best_match(query, choices, limit=50): | |
# Using RapidFuzz for improved performance and fuzzy matching | |
matches = process.extract(query, choices, scorer=fuzz.WRatio, limit=limit) | |
return [match[0] for match in matches if match[1] > 70] | |
def match_query_words_in_titles(query, title): | |
""" | |
Check if all words in the query have a close match within the title. | |
Returns True if all words match to a certain degree; False otherwise. | |
""" | |
query_words = query.lower().split() | |
match_threshold = 80 # Adjust this threshold as needed | |
for word in query_words: | |
# Find the best match for each word in the query within the title | |
match_score = fuzz.partial_ratio(word, title.lower()) | |
if match_score < match_threshold: | |
return False # If any word doesn't match well enough, return False | |
return True # All words matched well enough | |
def filtrar_itens_similares(df, termo_pesquisa, limit=50): | |
# Apply the match function to each title, filtering for those that match the query words | |
matches = df['Title'].apply(lambda title: match_query_words_in_titles(termo_pesquisa, title)) | |
df_filtrado = df[matches] | |
# Further refine the list to the top N matches based on overall similarity to the query | |
df_filtrado['Overall_Similarity'] = df_filtrado['Title'].apply(lambda title: fuzz.WRatio(termo_pesquisa, title)) | |
df_filtrado = df_filtrado.sort_values('Overall_Similarity', ascending=False).head(limit) | |
return df_filtrado | |
def calcular_fator_avaliacao(titulo, EC, PU): | |
filtered_df = bens_df[bens_df['TITULO'] == titulo] | |
if filtered_df.empty: | |
return None # Or handle the error as needed | |
bem_info = filtered_df.iloc[0] | |
VU, VR = bem_info['VIDA_UTIL'], bem_info['VALOR_RESIDUAL'] | |
ec_pontuacao = {'Excelente': 10, 'Bom': 8, 'Regular': 5, 'Péssimo': 2}[EC] | |
PU, PVU, PUB = float(PU), min(10 - ((PU - 1) * (10 / VU)), 10), min(10 - (((VU - PU) - 1) * (10 / VU)), 10) | |
fator_avaliacao = max((4 * ec_pontuacao + 6 * PVU - 3 * PUB) / 100, VR) | |
return fator_avaliacao | |
def select_nearest_items(df, query): | |
# Lower the title similarity threshold if necessary | |
df['Title_Similarity'] = df['Title'].apply(lambda x: fuzz.WRatio(query, x)) | |
df_filtered = df[df['Title_Similarity'] > 70] # Adjusted threshold | |
# Calculate mode price in a more inclusive manner | |
mode_price = df_filtered['Price'].mode() | |
if mode_price.empty: | |
target_price = df_filtered['Price'].median() | |
else: | |
target_price = mode_price.min() | |
df_filtered['Distance'] = (df_filtered['Price'] - target_price).abs() | |
df_sorted = df_filtered.sort_values(['Distance', 'Title_Similarity'], ascending=[True, False]) | |
# Ensure diversity in marketplaces | |
marketplaces_selected = set() | |
results = [] | |
for _, row in df_sorted.iterrows(): | |
if row['Marketplace'] not in marketplaces_selected and len(marketplaces_selected) < 5: | |
results.append(row) | |
marketplaces_selected.add(row['Marketplace']) | |
if len(results) >= 5: | |
break | |
return pd.DataFrame(results) | |
def search_with_fallback(query, df, limit=50): | |
query_parts = query.split() | |
include_conjunto = "conjunto" in query.lower() | |
for i in range(len(query_parts), 0, -1): | |
simplified_query = " ".join(query_parts[:i]) | |
df_refinado = refinar_resultados(df, include_word=include_conjunto) | |
df_filtrado = filtrar_itens_similares(df_refinado, simplified_query, limit=limit) | |
if not df_filtrado.empty: | |
return df_filtrado | |
return pd.DataFrame() | |
def integrated_app(query, titulo, EC, PU): | |
df_mercadolibre = fetch_data_to_dataframe(query, 50, "mercadolibre") | |
print(df_mercadolibre) | |
df_combined = pd.concat([df_mercadolibre, data_crawler], ignore_index=True) | |
print(df_combined) | |
if df_combined.empty: | |
return "Nenhum dado encontrado. Tente uma consulta diferente.", pd.DataFrame() | |
# Pass whether "conjunto" is part of the original query | |
include_conjunto = "conjunto" in query.lower() | |
df_refined = refinar_resultados(df_combined, include_word=include_conjunto) | |
df_similares = search_with_fallback(query, df_refined) | |
if df_similares.empty: | |
return "Nenhum item similar encontrado.", pd.DataFrame() | |
df_nearest = select_nearest_items(df_similares, query) | |
if df_nearest.empty: | |
return "Nenhum resultado próximo encontrado.", pd.DataFrame() | |
fator_avaliacao = calcular_fator_avaliacao(titulo, EC, PU) | |
valor_avaliacao = df_nearest['Price'].mean() * fator_avaliacao | |
return f"Valor Médio do Bem: R$ {df_nearest['Price'].mean():.2f}, Fator de Avaliação: {fator_avaliacao*100:.2f}%, Valor de Avaliação: R$ {valor_avaliacao:.2f}", df_nearest | |
iface = gr.Interface(fn=integrated_app, | |
inputs=[gr.Textbox(label="Digite sua consulta"), | |
gr.Dropdown(label="Classificação Contábil do Bem", choices=bens_df['TITULO'].unique().tolist(), value="MOBILIÁRIO EM GERAL"), | |
gr.Radio(label="Estado de Conservação do Bem", choices=['Excelente', 'Bom', 'Regular', 'Péssimo'], value="Excelente"), | |
gr.Number(label="Período utilizado (anos)", value=1)], | |
outputs=[gr.Textbox(label="Cálculo"), gr.Dataframe(label="Resultados da Pesquisa")], | |
theme=gr.themes.Monochrome(), | |
title="<span style='color: gray; font-size: 48px;'>Avaliação de Bens Móveis</span>", | |
description="""<p style="text-align: left;"><b><span style='color: gray; font-size: 40px;'>aval</span><span style='color: black; font-size: 40px;'>ia</span><span style='color: gray; font-size: 40px;'>.se</b></p>""") | |
iface.launch() | |