gartajackhats1985's picture
Upload 45 files
028694a verified
raw
history blame
21.7 kB
# adapted from https://github.com/kohya-ss/ControlNet-LLLite-ComfyUI
# basically, all the LLLite core code is from there, which I then combined with
# Advanced-ControlNet features and QoL
import math
from typing import Union
from torch import Tensor
import torch
import os
import comfy.utils
import comfy.ops
import comfy.model_management
from comfy.model_patcher import ModelPatcher
from comfy.controlnet import ControlBase
from .logger import logger
from .utils import (AdvancedControlBase, TimestepKeyframeGroup, ControlWeights, broadcast_image_to_extend, extend_to_batch_size,
deepcopy_with_sharing, prepare_mask_batch)
# based on set_model_patch code in comfy/model_patcher.py
def set_model_patch(model_options, patch, name):
to = model_options["transformer_options"]
# check if patch was already added
if "patches" in to:
current_patches = to["patches"].get(name, [])
if patch in current_patches:
return
if "patches" not in to:
to["patches"] = {}
to["patches"][name] = to["patches"].get(name, []) + [patch]
def set_model_attn1_patch(model_options, patch):
set_model_patch(model_options, patch, "attn1_patch")
def set_model_attn2_patch(model_options, patch):
set_model_patch(model_options, patch, "attn2_patch")
def extra_options_to_module_prefix(extra_options):
# extra_options = {'transformer_index': 2, 'block_index': 8, 'original_shape': [2, 4, 128, 128], 'block': ('input', 7), 'n_heads': 20, 'dim_head': 64}
# block is: [('input', 4), ('input', 5), ('input', 7), ('input', 8), ('middle', 0),
# ('output', 0), ('output', 1), ('output', 2), ('output', 3), ('output', 4), ('output', 5)]
# transformer_index is: [0, 1, 2, 3, 4, 5, 6, 7, 8], for each block
# block_index is: 0-1 or 0-9, depends on the block
# input 7 and 8, middle has 10 blocks
# make module name from extra_options
block = extra_options["block"]
block_index = extra_options["block_index"]
if block[0] == "input":
module_pfx = f"lllite_unet_input_blocks_{block[1]}_1_transformer_blocks_{block_index}"
elif block[0] == "middle":
module_pfx = f"lllite_unet_middle_block_1_transformer_blocks_{block_index}"
elif block[0] == "output":
module_pfx = f"lllite_unet_output_blocks_{block[1]}_1_transformer_blocks_{block_index}"
else:
raise Exception(f"ControlLLLite: invalid block name '{block[0]}'. Expected 'input', 'middle', or 'output'.")
return module_pfx
class LLLitePatch:
ATTN1 = "attn1"
ATTN2 = "attn2"
def __init__(self, modules: dict[str, 'LLLiteModule'], patch_type: str, control: Union[AdvancedControlBase, ControlBase]=None):
self.modules = modules
self.control = control
self.patch_type = patch_type
#logger.error(f"create LLLitePatch: {id(self)},{control}")
def __call__(self, q, k, v, extra_options):
#logger.error(f"in __call__: {id(self)}")
# determine if have anything to run
if self.control.timestep_range is not None:
# it turns out comparing single-value tensors to floats is extremely slow
# a: Tensor = extra_options["sigmas"][0]
if self.control.t > self.control.timestep_range[0] or self.control.t < self.control.timestep_range[1]:
return q, k, v
module_pfx = extra_options_to_module_prefix(extra_options)
is_attn1 = q.shape[-1] == k.shape[-1] # self attention
if is_attn1:
module_pfx = module_pfx + "_attn1"
else:
module_pfx = module_pfx + "_attn2"
module_pfx_to_q = module_pfx + "_to_q"
module_pfx_to_k = module_pfx + "_to_k"
module_pfx_to_v = module_pfx + "_to_v"
if module_pfx_to_q in self.modules:
q = q + self.modules[module_pfx_to_q](q, self.control)
if module_pfx_to_k in self.modules:
k = k + self.modules[module_pfx_to_k](k, self.control)
if module_pfx_to_v in self.modules:
v = v + self.modules[module_pfx_to_v](v, self.control)
return q, k, v
def to(self, device):
#logger.info(f"to... has control? {self.control}")
for d in self.modules.keys():
self.modules[d] = self.modules[d].to(device)
return self
def set_control(self, control: Union[AdvancedControlBase, ControlBase]) -> 'LLLitePatch':
self.control = control
return self
#logger.error(f"set control for LLLitePatch: {id(self)}, cn: {id(control)}")
def clone_with_control(self, control: AdvancedControlBase):
#logger.error(f"clone-set control for LLLitePatch: {id(self)},{id(control)}")
return LLLitePatch(self.modules, self.patch_type, control)
def cleanup(self):
#total_cleaned = 0
for module in self.modules.values():
module.cleanup()
# total_cleaned += 1
#logger.info(f"cleaned modules: {total_cleaned}, {id(self)}")
#logger.error(f"cleanup LLLitePatch: {id(self)}")
# make sure deepcopy does not copy control, and deepcopied LLLitePatch should be assigned to control
# def __deepcopy__(self, memo):
# self.cleanup()
# to_return: LLLitePatch = deepcopy_with_sharing(self, shared_attribute_names = ['control'], memo=memo)
# #logger.warn(f"patch {id(self)} turned into {id(to_return)}")
# try:
# if self.patch_type == self.ATTN1:
# to_return.control.patch_attn1 = to_return
# elif self.patch_type == self.ATTN2:
# to_return.control.patch_attn2 = to_return
# except Exception:
# pass
# return to_return
# TODO: use comfy.ops to support fp8 properly
class LLLiteModule(torch.nn.Module):
def __init__(
self,
name: str,
is_conv2d: bool,
in_dim: int,
depth: int,
cond_emb_dim: int,
mlp_dim: int,
):
super().__init__()
self.name = name
self.is_conv2d = is_conv2d
self.is_first = False
modules = []
modules.append(torch.nn.Conv2d(3, cond_emb_dim // 2, kernel_size=4, stride=4, padding=0)) # to latent (from VAE) size*2
if depth == 1:
modules.append(torch.nn.ReLU(inplace=True))
modules.append(torch.nn.Conv2d(cond_emb_dim // 2, cond_emb_dim, kernel_size=2, stride=2, padding=0))
elif depth == 2:
modules.append(torch.nn.ReLU(inplace=True))
modules.append(torch.nn.Conv2d(cond_emb_dim // 2, cond_emb_dim, kernel_size=4, stride=4, padding=0))
elif depth == 3:
# kernel size 8 is too large, so set it to 4
modules.append(torch.nn.ReLU(inplace=True))
modules.append(torch.nn.Conv2d(cond_emb_dim // 2, cond_emb_dim // 2, kernel_size=4, stride=4, padding=0))
modules.append(torch.nn.ReLU(inplace=True))
modules.append(torch.nn.Conv2d(cond_emb_dim // 2, cond_emb_dim, kernel_size=2, stride=2, padding=0))
self.conditioning1 = torch.nn.Sequential(*modules)
if self.is_conv2d:
self.down = torch.nn.Sequential(
torch.nn.Conv2d(in_dim, mlp_dim, kernel_size=1, stride=1, padding=0),
torch.nn.ReLU(inplace=True),
)
self.mid = torch.nn.Sequential(
torch.nn.Conv2d(mlp_dim + cond_emb_dim, mlp_dim, kernel_size=1, stride=1, padding=0),
torch.nn.ReLU(inplace=True),
)
self.up = torch.nn.Sequential(
torch.nn.Conv2d(mlp_dim, in_dim, kernel_size=1, stride=1, padding=0),
)
else:
self.down = torch.nn.Sequential(
torch.nn.Linear(in_dim, mlp_dim),
torch.nn.ReLU(inplace=True),
)
self.mid = torch.nn.Sequential(
torch.nn.Linear(mlp_dim + cond_emb_dim, mlp_dim),
torch.nn.ReLU(inplace=True),
)
self.up = torch.nn.Sequential(
torch.nn.Linear(mlp_dim, in_dim),
)
self.depth = depth
self.cond_emb = None
self.cx_shape = None
self.prev_batch = 0
self.prev_sub_idxs = None
def cleanup(self):
del self.cond_emb
self.cond_emb = None
self.cx_shape = None
self.prev_batch = 0
self.prev_sub_idxs = None
def forward(self, x: Tensor, control: Union[AdvancedControlBase, ControlBase]):
mask = None
mask_tk = None
#logger.info(x.shape)
if self.cond_emb is None or control.sub_idxs != self.prev_sub_idxs or x.shape[0] != self.prev_batch:
# print(f"cond_emb is None, {self.name}")
cond_hint = control.cond_hint.to(x.device, dtype=x.dtype)
if control.latent_dims_div2 is not None and x.shape[-1] != 1280:
cond_hint = comfy.utils.common_upscale(cond_hint, control.latent_dims_div2[0] * 8, control.latent_dims_div2[1] * 8, 'nearest-exact', "center").to(x.device, dtype=x.dtype)
elif control.latent_dims_div4 is not None and x.shape[-1] == 1280:
cond_hint = comfy.utils.common_upscale(cond_hint, control.latent_dims_div4[0] * 8, control.latent_dims_div4[1] * 8, 'nearest-exact', "center").to(x.device, dtype=x.dtype)
cx = self.conditioning1(cond_hint)
self.cx_shape = cx.shape
if not self.is_conv2d:
# reshape / b,c,h,w -> b,h*w,c
n, c, h, w = cx.shape
cx = cx.view(n, c, h * w).permute(0, 2, 1)
self.cond_emb = cx
# save prev values
self.prev_batch = x.shape[0]
self.prev_sub_idxs = control.sub_idxs
cx: torch.Tensor = self.cond_emb
# print(f"forward {self.name}, {cx.shape}, {x.shape}")
# TODO: make masks work for conv2d (could not find any ControlLLLites at this time that use them)
# create masks
if not self.is_conv2d:
n, c, h, w = self.cx_shape
if control.mask_cond_hint is not None:
mask = prepare_mask_batch(control.mask_cond_hint, (1, 1, h, w)).to(cx.dtype)
mask = mask.view(mask.shape[0], 1, h * w).permute(0, 2, 1)
if control.tk_mask_cond_hint is not None:
mask_tk = prepare_mask_batch(control.mask_cond_hint, (1, 1, h, w)).to(cx.dtype)
mask_tk = mask_tk.view(mask_tk.shape[0], 1, h * w).permute(0, 2, 1)
# x in uncond/cond doubles batch size
if x.shape[0] != cx.shape[0]:
if self.is_conv2d:
cx = cx.repeat(x.shape[0] // cx.shape[0], 1, 1, 1)
else:
# print("x.shape[0] != cx.shape[0]", x.shape[0], cx.shape[0])
cx = cx.repeat(x.shape[0] // cx.shape[0], 1, 1)
if mask is not None:
mask = mask.repeat(x.shape[0] // mask.shape[0], 1, 1)
if mask_tk is not None:
mask_tk = mask_tk.repeat(x.shape[0] // mask_tk.shape[0], 1, 1)
if mask is None:
mask = 1.0
elif mask_tk is not None:
mask = mask * mask_tk
#logger.info(f"cs: {cx.shape}, x: {x.shape}, is_conv2d: {self.is_conv2d}")
cx = torch.cat([cx, self.down(x)], dim=1 if self.is_conv2d else 2)
cx = self.mid(cx)
cx = self.up(cx)
if control.latent_keyframes is not None:
cx = cx * control.calc_latent_keyframe_mults(x=cx, batched_number=control.batched_number)
if control.weights is not None and control.weights.has_uncond_multiplier:
cond_or_uncond = control.batched_number.cond_or_uncond
actual_length = cx.size(0) // control.batched_number
for idx, cond_type in enumerate(cond_or_uncond):
# if uncond, set to weight's uncond_multiplier
if cond_type == 1:
cx[actual_length*idx:actual_length*(idx+1)] *= control.weights.uncond_multiplier
return cx * mask * control.strength * control._current_timestep_keyframe.strength
class ControlLLLiteModules(torch.nn.Module):
def __init__(self, patch_attn1: LLLitePatch, patch_attn2: LLLitePatch):
super().__init__()
self.patch_attn1_modules = torch.nn.Sequential(*list(patch_attn1.modules.values()))
self.patch_attn2_modules = torch.nn.Sequential(*list(patch_attn2.modules.values()))
class ControlLLLiteAdvanced(ControlBase, AdvancedControlBase):
# This ControlNet is more of an attention patch than a traditional controlnet
def __init__(self, patch_attn1: LLLitePatch, patch_attn2: LLLitePatch, timestep_keyframes: TimestepKeyframeGroup, device, ops: comfy.ops.disable_weight_init):
super().__init__()
AdvancedControlBase.__init__(self, super(), timestep_keyframes=timestep_keyframes, weights_default=ControlWeights.controllllite())
self.device = device
self.ops = ops
self.patch_attn1 = patch_attn1.clone_with_control(self)
self.patch_attn2 = patch_attn2.clone_with_control(self)
self.control_model = ControlLLLiteModules(self.patch_attn1, self.patch_attn2)
self.control_model_wrapped = ModelPatcher(self.control_model, load_device=device, offload_device=comfy.model_management.unet_offload_device())
self.latent_dims_div2 = None
self.latent_dims_div4 = None
def live_model_patches(self, model_options):
set_model_attn1_patch(model_options, self.patch_attn1.set_control(self))
set_model_attn2_patch(model_options, self.patch_attn2.set_control(self))
# def patch_model(self, model: ModelPatcher):
# model.set_model_attn1_patch(self.patch_attn1)
# model.set_model_attn2_patch(self.patch_attn2)
def set_cond_hint_inject(self, *args, **kwargs):
to_return = super().set_cond_hint_inject(*args, **kwargs)
# cond hint for LLLite needs to be scaled between (-1, 1) instead of (0, 1)
self.cond_hint_original = self.cond_hint_original * 2.0 - 1.0
return to_return
def pre_run_advanced(self, *args, **kwargs):
AdvancedControlBase.pre_run_advanced(self, *args, **kwargs)
#logger.error(f"in cn: {id(self.patch_attn1)},{id(self.patch_attn2)}")
self.patch_attn1.set_control(self)
self.patch_attn2.set_control(self)
#logger.warn(f"in pre_run_advanced: {id(self)}")
def get_control_advanced(self, x_noisy: Tensor, t, cond, batched_number: int):
# normal ControlNet stuff
control_prev = None
if self.previous_controlnet is not None:
control_prev = self.previous_controlnet.get_control(x_noisy, t, cond, batched_number)
if self.timestep_range is not None:
if t[0] > self.timestep_range[0] or t[0] < self.timestep_range[1]:
return control_prev
dtype = x_noisy.dtype
# prepare cond_hint
if self.sub_idxs is not None or self.cond_hint is None or x_noisy.shape[2] * 8 != self.cond_hint.shape[2] or x_noisy.shape[3] * 8 != self.cond_hint.shape[3]:
if self.cond_hint is not None:
del self.cond_hint
self.cond_hint = None
# if self.cond_hint_original length greater or equal to real latent count, subdivide it before scaling
if self.sub_idxs is not None:
actual_cond_hint_orig = self.cond_hint_original
if self.cond_hint_original.size(0) < self.full_latent_length:
actual_cond_hint_orig = extend_to_batch_size(tensor=actual_cond_hint_orig, batch_size=self.full_latent_length)
self.cond_hint = comfy.utils.common_upscale(actual_cond_hint_orig[self.sub_idxs], x_noisy.shape[3] * 8, x_noisy.shape[2] * 8, 'nearest-exact', "center").to(dtype).to(x_noisy.device)
else:
self.cond_hint = comfy.utils.common_upscale(self.cond_hint_original, x_noisy.shape[3] * 8, x_noisy.shape[2] * 8, 'nearest-exact', "center").to(dtype).to(x_noisy.device)
if x_noisy.shape[0] != self.cond_hint.shape[0]:
self.cond_hint = broadcast_image_to_extend(self.cond_hint, x_noisy.shape[0], batched_number)
# some special logic here compared to other controlnets:
# * The cond_emb in attn patches will divide latent dims by 2 or 4, integer
# * Due to this loss, the cond_emb will become smaller than x input if latent dims are not divisble by 2 or 4
divisible_by_2_h = x_noisy.shape[2]%2==0
divisible_by_2_w = x_noisy.shape[3]%2==0
if not (divisible_by_2_h and divisible_by_2_w):
#logger.warn(f"{x_noisy.shape} not divisible by 2!")
new_h = (x_noisy.shape[2]//2)*2
new_w = (x_noisy.shape[3]//2)*2
if not divisible_by_2_h:
new_h += 2
if not divisible_by_2_w:
new_w += 2
self.latent_dims_div2 = (new_h, new_w)
divisible_by_4_h = x_noisy.shape[2]%4==0
divisible_by_4_w = x_noisy.shape[3]%4==0
if not (divisible_by_4_h and divisible_by_4_w):
#logger.warn(f"{x_noisy.shape} not divisible by 4!")
new_h = (x_noisy.shape[2]//4)*4
new_w = (x_noisy.shape[3]//4)*4
if not divisible_by_4_h:
new_h += 4
if not divisible_by_4_w:
new_w += 4
self.latent_dims_div4 = (new_h, new_w)
# prepare mask
self.prepare_mask_cond_hint(x_noisy=x_noisy, t=t, cond=cond, batched_number=batched_number)
# done preparing; model patches will take care of everything now.
# return normal controlnet stuff
return control_prev
def get_models(self):
to_return: list = super().get_models()
to_return.append(self.control_model_wrapped)
return to_return
def cleanup_advanced(self):
super().cleanup_advanced()
self.patch_attn1.cleanup()
self.patch_attn2.cleanup()
self.latent_dims_div2 = None
self.latent_dims_div4 = None
def copy(self):
c = ControlLLLiteAdvanced(self.patch_attn1, self.patch_attn2, self.timestep_keyframes, self.device, self.ops)
self.copy_to(c)
self.copy_to_advanced(c)
return c
# deepcopy needs to properly keep track of objects to work between model.clone calls!
# def __deepcopy__(self, *args, **kwargs):
# self.cleanup_advanced()
# return self
# def get_models(self):
# # get_models is called once at the start of every KSampler run - use to reset already_patched status
# out = super().get_models()
# logger.error(f"in get_models! {id(self)}")
# return out
def load_controllllite(ckpt_path: str, controlnet_data: dict[str, Tensor]=None, timestep_keyframe: TimestepKeyframeGroup=None):
if controlnet_data is None:
controlnet_data = comfy.utils.load_torch_file(ckpt_path, safe_load=True)
# adapted from https://github.com/kohya-ss/ControlNet-LLLite-ComfyUI
# first, split weights for each module
module_weights = {}
for key, value in controlnet_data.items():
fragments = key.split(".")
module_name = fragments[0]
weight_name = ".".join(fragments[1:])
if module_name not in module_weights:
module_weights[module_name] = {}
module_weights[module_name][weight_name] = value
unet_dtype = comfy.model_management.unet_dtype()
load_device = comfy.model_management.get_torch_device()
manual_cast_dtype = comfy.model_management.unet_manual_cast(unet_dtype, load_device)
ops = comfy.ops.disable_weight_init
if manual_cast_dtype is not None:
ops = comfy.ops.manual_cast
# next, load each module
modules = {}
for module_name, weights in module_weights.items():
# kohya planned to do something about how these should be chosen, so I'm not touching this
# since I am not familiar with the logic for this
if "conditioning1.4.weight" in weights:
depth = 3
elif weights["conditioning1.2.weight"].shape[-1] == 4:
depth = 2
else:
depth = 1
module = LLLiteModule(
name=module_name,
is_conv2d=weights["down.0.weight"].ndim == 4,
in_dim=weights["down.0.weight"].shape[1],
depth=depth,
cond_emb_dim=weights["conditioning1.0.weight"].shape[0] * 2,
mlp_dim=weights["down.0.weight"].shape[0],
)
# load weights into module
module.load_state_dict(weights)
modules[module_name] = module.to(dtype=unet_dtype)
if len(modules) == 1:
module.is_first = True
#logger.info(f"loaded {ckpt_path} successfully, {len(modules)} modules")
patch_attn1 = LLLitePatch(modules=modules, patch_type=LLLitePatch.ATTN1)
patch_attn2 = LLLitePatch(modules=modules, patch_type=LLLitePatch.ATTN2)
control = ControlLLLiteAdvanced(patch_attn1=patch_attn1, patch_attn2=patch_attn2, timestep_keyframes=timestep_keyframe, device=load_device, ops=ops)
return control