Spaces:
Running
Running
# Code ported and modified from the diffusers ControlNetPlus repo by Qi Xin: | |
# https://github.com/xinsir6/ControlNetPlus/blob/main/models/controlnet_union.py | |
from typing import Union | |
import os | |
import torch | |
import torch as th | |
import torch.nn as nn | |
from torch import Tensor | |
from collections import OrderedDict | |
from comfy.ldm.modules.diffusionmodules.util import (zero_module, timestep_embedding) | |
from comfy.cldm.cldm import ControlNet as ControlNetCLDM | |
import comfy.cldm.cldm | |
from comfy.controlnet import ControlNet | |
#from comfy.t2i_adapter.adapter import ResidualAttentionBlock | |
from comfy.ldm.modules.attention import optimized_attention | |
import comfy.ops | |
import comfy.model_management | |
import comfy.model_detection | |
import comfy.utils | |
from .utils import (AdvancedControlBase, ControlWeights, ControlWeightType, TimestepKeyframeGroup, AbstractPreprocWrapper, | |
extend_to_batch_size, broadcast_image_to_extend) | |
from .logger import logger | |
class PlusPlusType: | |
OPENPOSE = "openpose" | |
DEPTH = "depth" | |
THICKLINE = "hed/pidi/scribble/ted" | |
THINLINE = "canny/lineart/mlsd" | |
NORMAL = "normal" | |
SEGMENT = "segment" | |
TILE = "tile" | |
REPAINT = "inpaint/outpaint" | |
NONE = "none" | |
_LIST_WITH_NONE = [OPENPOSE, DEPTH, THICKLINE, THINLINE, NORMAL, SEGMENT, TILE, REPAINT, NONE] | |
_LIST = [OPENPOSE, DEPTH, THICKLINE, THINLINE, NORMAL, SEGMENT, TILE, REPAINT] | |
_DICT = {OPENPOSE: 0, DEPTH: 1, THICKLINE: 2, THINLINE: 3, NORMAL: 4, SEGMENT: 5, TILE: 6, REPAINT: 7, NONE: -1} | |
def to_idx(cls, control_type: str): | |
try: | |
return cls._DICT[control_type] | |
except KeyError: | |
raise Exception(f"Unknown control type '{control_type}'.") | |
class PlusPlusInput: | |
def __init__(self, image: Tensor, control_type: str, strength: float): | |
self.image = image | |
self.control_type = control_type | |
self.strength = strength | |
def clone(self): | |
return PlusPlusInput(self.image, self.control_type, self.strength) | |
class PlusPlusInputGroup: | |
def __init__(self): | |
self.controls: dict[str, PlusPlusInput] = {} | |
def add(self, pp_input: PlusPlusInput): | |
if pp_input.control_type in self.controls: | |
raise Exception(f"Control type '{pp_input.control_type}' is already present; ControlNet++ does not allow more than 1 of each type.") | |
self.controls[pp_input.control_type] = pp_input | |
def clone(self) -> 'PlusPlusInputGroup': | |
cloned = PlusPlusInputGroup() | |
for key, value in self.controls.items(): | |
cloned.controls[key] = value.clone() | |
return cloned | |
class PlusPlusImageWrapper(AbstractPreprocWrapper): | |
error_msg = error_msg = "Invalid use of ControlNet++ Image Wrapper. The output of ControlNet++ Image Wrapper is NOT a usual image, but an object holding the images and extra info - you must connect the output directly to an Apply Advanced ControlNet node. It cannot be used for anything else that accepts IMAGE input." | |
def __init__(self, condhint: PlusPlusInputGroup): | |
super().__init__(condhint) | |
# just an IDE type hint | |
self.condhint: PlusPlusInputGroup | |
def movedim(self, source: int, destination: int): | |
condhint = self.condhint.clone() | |
for pp_input in condhint.controls.values(): | |
pp_input.image = pp_input.image.movedim(source, destination) | |
return PlusPlusImageWrapper(condhint) | |
# parts taken from comfy/cldm/cldm.py | |
class OptimizedAttention(nn.Module): | |
def __init__(self, c, nhead, dropout=0.0, dtype=None, device=None, operations=None): | |
super().__init__() | |
self.heads = nhead | |
self.c = c | |
self.in_proj = operations.Linear(c, c * 3, bias=True, dtype=dtype, device=device) | |
self.out_proj = operations.Linear(c, c, bias=True, dtype=dtype, device=device) | |
def forward(self, x): | |
x = self.in_proj(x) | |
q, k, v = x.split(self.c, dim=2) | |
out = optimized_attention(q, k, v, self.heads) | |
return self.out_proj(out) | |
class QuickGELU(nn.Module): | |
def forward(self, x: torch.Tensor): | |
return x * torch.sigmoid(1.702 * x) | |
class ResBlockUnionControlnet(nn.Module): | |
def __init__(self, dim, nhead, dtype=None, device=None, operations=None): | |
super().__init__() | |
self.attn = OptimizedAttention(dim, nhead, dtype=dtype, device=device, operations=operations) | |
self.ln_1 = operations.LayerNorm(dim, dtype=dtype, device=device) | |
self.mlp = nn.Sequential( | |
OrderedDict([("c_fc", operations.Linear(dim, dim * 4, dtype=dtype, device=device)), ("gelu", QuickGELU()), | |
("c_proj", operations.Linear(dim * 4, dim, dtype=dtype, device=device))])) | |
self.ln_2 = operations.LayerNorm(dim, dtype=dtype, device=device) | |
def attention(self, x: torch.Tensor): | |
return self.attn(x) | |
def forward(self, x: torch.Tensor): | |
x = x + self.attention(self.ln_1(x)) | |
x = x + self.mlp(self.ln_2(x)) | |
return x | |
class ControlAddEmbeddingAdv(nn.Module): | |
def __init__(self, in_dim, out_dim, num_control_type, dtype=None, device=None, operations: comfy.ops.disable_weight_init=None): | |
super().__init__() | |
self.num_control_type = num_control_type | |
self.in_dim = in_dim | |
self.linear_1 = operations.Linear(in_dim * num_control_type, out_dim, dtype=dtype, device=device) | |
self.linear_2 = operations.Linear(out_dim, out_dim, dtype=dtype, device=device) | |
def forward(self, control_type, dtype, device): | |
if control_type is None: | |
control_type = torch.zeros((self.num_control_type,), device=device) | |
c_type = timestep_embedding(control_type.flatten(), self.in_dim, repeat_only=False).to(dtype).reshape((-1, self.num_control_type * self.in_dim)) | |
return self.linear_2(torch.nn.functional.silu(self.linear_1(c_type))) | |
class ControlNetPlusPlus(ControlNetCLDM): | |
def __init__(self, *args,**kwargs): | |
super().__init__(*args, **kwargs) | |
operations: comfy.ops.disable_weight_init = kwargs.get("operations", comfy.ops.disable_weight_init) | |
device = kwargs.get("device", None) | |
time_embed_dim = self.model_channels * 4 | |
control_add_embed_dim = 256 | |
self.control_add_embedding = ControlAddEmbeddingAdv(control_add_embed_dim, time_embed_dim, self.num_control_type, dtype=self.dtype, device=device, operations=operations) | |
def union_controlnet_merge(self, hint: list[Tensor], control_type, emb, context): | |
# Equivalent to: https://github.com/xinsir6/ControlNetPlus/tree/main | |
indexes = torch.nonzero(control_type[0]) | |
inputs = [] | |
condition_list = [] | |
for idx in range(indexes.shape[0]): | |
controlnet_cond = self.input_hint_block(hint[indexes[idx][0]], emb, context) | |
feat_seq = torch.mean(controlnet_cond, dim=(2, 3)) | |
if idx < indexes.shape[0]: | |
feat_seq += self.task_embedding[indexes[idx][0]].to(dtype=feat_seq.dtype, device=feat_seq.device) | |
inputs.append(feat_seq.unsqueeze(1)) | |
condition_list.append(controlnet_cond) | |
x = torch.cat(inputs, dim=1) | |
x = self.transformer_layes(x) | |
controlnet_cond_fuser = None | |
for idx in range(indexes.shape[0]): | |
alpha = self.spatial_ch_projs(x[:, idx]) | |
alpha = alpha.unsqueeze(-1).unsqueeze(-1) | |
o = condition_list[idx] + alpha | |
if controlnet_cond_fuser is None: | |
controlnet_cond_fuser = o | |
else: | |
controlnet_cond_fuser += o | |
return controlnet_cond_fuser | |
def forward(self, x: Tensor, hint: list[Tensor], timesteps, context, y: Tensor=None, **kwargs): | |
t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False).to(x.dtype) | |
emb = self.time_embed(t_emb) | |
guided_hint = None | |
if self.control_add_embedding is not None: | |
control_type = kwargs.get("control_type", None) | |
emb += self.control_add_embedding(control_type, emb.dtype, emb.device) | |
if control_type is not None: | |
guided_hint = self.union_controlnet_merge(hint, control_type, emb, context) | |
if guided_hint is None: | |
guided_hint = self.input_hint_block(hint[0], emb, context) | |
out_output = [] | |
out_middle = [] | |
hs = [] | |
if self.num_classes is not None: | |
assert y.shape[0] == x.shape[0] | |
emb = emb + self.label_emb(y) | |
h = x | |
for module, zero_conv in zip(self.input_blocks, self.zero_convs): | |
if guided_hint is not None: | |
h = module(h, emb, context) | |
h += guided_hint | |
guided_hint = None | |
else: | |
h = module(h, emb, context) | |
out_output.append(zero_conv(h, emb, context)) | |
h = self.middle_block(h, emb, context) | |
out_middle.append(self.middle_block_out(h, emb, context)) | |
return {"middle": out_middle, "output": out_output} | |
class ControlNetPlusPlusAdvanced(ControlNet, AdvancedControlBase): | |
def __init__(self, control_model: ControlNetPlusPlus, timestep_keyframes: TimestepKeyframeGroup, global_average_pooling=False, load_device=None, manual_cast_dtype=None): | |
super().__init__(control_model=control_model, global_average_pooling=global_average_pooling, load_device=load_device, manual_cast_dtype=manual_cast_dtype) | |
AdvancedControlBase.__init__(self, super(), timestep_keyframes=timestep_keyframes, weights_default=ControlWeights.controlnet()) | |
self.add_compatible_weight(ControlWeightType.CONTROLNETPLUSPLUS) | |
# for IDE type hint purposes | |
self.control_model: ControlNetPlusPlus | |
self.cond_hint_original: Union[PlusPlusImageWrapper, PlusPlusInputGroup] | |
self.cond_hint: list[Union[Tensor, None]] | |
self.cond_hint_shape: Tensor = None | |
self.cond_hint_types: Tensor = None | |
# in case it is using the single loader | |
self.single_control_type: str = None | |
def get_universal_weights(self) -> ControlWeights: | |
def cn_weights_func(idx: int, control: dict[str, list[Tensor]], key: str): | |
if key == "middle": | |
return 1.0 | |
c_len = len(control[key]) | |
raw_weights = [(self.weights.base_multiplier ** float((c_len) - i)) for i in range(c_len+1)] | |
raw_weights = raw_weights[:-1] | |
if key == "input": | |
raw_weights.reverse() | |
return raw_weights[idx] | |
return self.weights.copy_with_new_weights(new_weight_func=cn_weights_func) | |
def verify_control_type(self, model_name: str, pp_group: PlusPlusInputGroup=None): | |
if pp_group is not None: | |
for pp_input in pp_group.controls.values(): | |
if PlusPlusType.to_idx(pp_input.control_type) >= self.control_model.num_control_type: | |
raise Exception(f"ControlNet++ model '{model_name}' does not support control_type '{pp_input.control_type}'.") | |
if self.single_control_type is not None: | |
if PlusPlusType.to_idx(self.single_control_type) >= self.control_model.num_control_type: | |
raise Exception(f"ControlNet++ model '{model_name}' does not support control_type '{self.single_control_type}'.") | |
def set_cond_hint_inject(self, *args, **kwargs): | |
to_return = super().set_cond_hint_inject(*args, **kwargs) | |
# if not single_control_type, expect PlusPlusImageWrapper | |
if self.single_control_type is None: | |
# check that cond_hint is wrapped, and unwrap it | |
if type(self.cond_hint_original) != PlusPlusImageWrapper: | |
raise Exception("ControlNet++ (Multi) expects image input from the Load ControlNet++ Model node, NOT from anything else. Images are provided to that node via ControlNet++ Input nodes.") | |
self.cond_hint_original = self.cond_hint_original.condhint.clone() | |
# otherwise, expect single image input (AKA, usual controlnet input) | |
else: | |
# check that cond_hint is not a PlusPlusImageWrapper | |
if type(self.cond_hint_original) == PlusPlusImageWrapper: | |
raise Exception("ControlNet++ (Single) expects usual image input, NOT the image input from a Load ControlNet++ Model (Multi) node.") | |
pp_group = PlusPlusInputGroup() | |
pp_input = PlusPlusInput(self.cond_hint_original, self.single_control_type, 1.0) | |
pp_group.add(pp_input) | |
self.cond_hint_original = pp_group | |
return to_return | |
def get_control_advanced(self, x_noisy: Tensor, t, cond, batched_number): | |
control_prev = None | |
if self.previous_controlnet is not None: | |
control_prev = self.previous_controlnet.get_control(x_noisy, t, cond, batched_number) | |
if self.timestep_range is not None: | |
if t[0] > self.timestep_range[0] or t[0] < self.timestep_range[1]: | |
if control_prev is not None: | |
return control_prev | |
else: | |
return None | |
dtype = self.control_model.dtype | |
if self.manual_cast_dtype is not None: | |
dtype = self.manual_cast_dtype | |
output_dtype = x_noisy.dtype | |
# make all cond_hints appropriate dimensions | |
# TODO: change this to not require cond_hint upscaling every step when self.sub_idxs is present | |
if self.sub_idxs is not None or self.cond_hint is None or x_noisy.shape[2] * self.compression_ratio != self.cond_hint_shape[2] or x_noisy.shape[3] * self.compression_ratio != self.cond_hint_shape[3]: | |
if self.cond_hint is not None: | |
del self.cond_hint | |
self.cond_hint = [None] * self.control_model.num_control_type | |
self.cond_hint_types = torch.tensor([0.0] * self.control_model.num_control_type) | |
self.cond_hint_shape = None | |
compression_ratio = self.compression_ratio | |
# unlike normal controlnet, need to handle each input image tensor (for each type) | |
for pp_type, pp_input in self.cond_hint_original.controls.items(): | |
pp_idx = PlusPlusType.to_idx(pp_type) | |
# if negative, means no type should be selected (single only) | |
if pp_idx < 0: | |
pp_idx = 0 | |
else: | |
self.cond_hint_types[pp_idx] = pp_input.strength | |
# if self.cond_hint_original lengths greater or equal to latent count, subdivide | |
if self.sub_idxs is not None: | |
actual_cond_hint_orig = pp_input.image | |
if pp_input.image.size(0) < self.full_latent_length: | |
actual_cond_hint_orig = extend_to_batch_size(tensor=actual_cond_hint_orig, batch_size=self.full_latent_length) | |
self.cond_hint[pp_idx] = comfy.utils.common_upscale(actual_cond_hint_orig[self.sub_idxs], x_noisy.shape[3] * compression_ratio, x_noisy.shape[2] * compression_ratio, 'nearest-exact', "center") | |
else: | |
self.cond_hint[pp_idx] = comfy.utils.common_upscale(pp_input.image, x_noisy.shape[3] * compression_ratio, x_noisy.shape[2] * compression_ratio, 'nearest-exact', "center") | |
self.cond_hint[pp_idx] = self.cond_hint[pp_idx].to(device=x_noisy.device, dtype=dtype) | |
self.cond_hint_shape = self.cond_hint[pp_idx].shape | |
# prepare cond_hint_controls to match batchsize | |
if self.cond_hint_types.count_nonzero() == 0: | |
self.cond_hint_types = None | |
else: | |
self.cond_hint_types = self.cond_hint_types.unsqueeze(0).to(device=x_noisy.device, dtype=dtype).repeat(x_noisy.shape[0], 1) | |
for i in range(len(self.cond_hint)): | |
if self.cond_hint[i] is not None: | |
if x_noisy.shape[0] != self.cond_hint[i].shape[0]: | |
self.cond_hint[i] = broadcast_image_to_extend(self.cond_hint[i], x_noisy.shape[0], batched_number) | |
if self.cond_hint_types is not None and x_noisy.shape[0] != self.cond_hint_types.shape[0]: | |
self.cond_hint_types = broadcast_image_to_extend(self.cond_hint_types, x_noisy.shape[0], batched_number, False) | |
# prepare mask_cond_hint | |
self.prepare_mask_cond_hint(x_noisy=x_noisy, t=t, cond=cond, batched_number=batched_number, dtype=dtype) | |
context = cond.get('crossattn_controlnet', cond['c_crossattn']) | |
y = cond.get('y', None) | |
if y is not None: | |
y = y.to(dtype) | |
timestep = self.model_sampling_current.timestep(t) | |
x_noisy = self.model_sampling_current.calculate_input(t, x_noisy) | |
control = self.control_model(x=x_noisy.to(dtype), hint=self.cond_hint, timesteps=timestep.float(), context=context.to(dtype), y=y, control_type=self.cond_hint_types) | |
return self.control_merge(control, control_prev, output_dtype) | |
def copy(self): | |
c = ControlNetPlusPlusAdvanced(self.control_model, self.timestep_keyframes, global_average_pooling=self.global_average_pooling, load_device=self.load_device, manual_cast_dtype=self.manual_cast_dtype) | |
self.copy_to(c) | |
self.copy_to_advanced(c) | |
c.single_control_type = self.single_control_type | |
return c | |
def load_controlnetplusplus(ckpt_path: str, timestep_keyframe: TimestepKeyframeGroup=None, model=None): | |
controlnet_data = comfy.utils.load_torch_file(ckpt_path, safe_load=True) | |
# check that actually is ControlNet++ model | |
if "task_embedding" not in controlnet_data: | |
raise Exception(f"'{ckpt_path}' is not a valid ControlNet++ model.") | |
controlnet_config = None | |
supported_inference_dtypes = None | |
if "controlnet_cond_embedding.conv_in.weight" in controlnet_data: #diffusers format | |
controlnet_config = comfy.model_detection.unet_config_from_diffusers_unet(controlnet_data) | |
diffusers_keys = comfy.utils.unet_to_diffusers(controlnet_config) | |
diffusers_keys["controlnet_mid_block.weight"] = "middle_block_out.0.weight" | |
diffusers_keys["controlnet_mid_block.bias"] = "middle_block_out.0.bias" | |
count = 0 | |
loop = True | |
while loop: | |
suffix = [".weight", ".bias"] | |
for s in suffix: | |
k_in = "controlnet_down_blocks.{}{}".format(count, s) | |
k_out = "zero_convs.{}.0{}".format(count, s) | |
if k_in not in controlnet_data: | |
loop = False | |
break | |
diffusers_keys[k_in] = k_out | |
count += 1 | |
count = 0 | |
loop = True | |
while loop: | |
suffix = [".weight", ".bias"] | |
for s in suffix: | |
if count == 0: | |
k_in = "controlnet_cond_embedding.conv_in{}".format(s) | |
else: | |
k_in = "controlnet_cond_embedding.blocks.{}{}".format(count - 1, s) | |
k_out = "input_hint_block.{}{}".format(count * 2, s) | |
if k_in not in controlnet_data: | |
k_in = "controlnet_cond_embedding.conv_out{}".format(s) | |
loop = False | |
diffusers_keys[k_in] = k_out | |
count += 1 | |
new_sd = {} | |
for k in diffusers_keys: | |
if k in controlnet_data: | |
new_sd[diffusers_keys[k]] = controlnet_data.pop(k) | |
if "control_add_embedding.linear_1.bias" in controlnet_data: #Union Controlnet | |
controlnet_config["union_controlnet_num_control_type"] = controlnet_data["task_embedding"].shape[0] | |
for k in list(controlnet_data.keys()): | |
new_k = k.replace('.attn.in_proj_', '.attn.in_proj.') | |
new_sd[new_k] = controlnet_data.pop(k) | |
leftover_keys = controlnet_data.keys() | |
if len(leftover_keys) > 0: | |
logger.warning("leftover ControlNet++ keys: {}".format(leftover_keys)) | |
controlnet_data = new_sd | |
elif "controlnet_blocks.0.weight" in controlnet_data: #SD3 diffusers format | |
raise Exception("Unexpected SD3 diffusers format for ControlNet++ model. Something is very wrong.") | |
pth_key = 'control_model.zero_convs.0.0.weight' | |
pth = False | |
key = 'zero_convs.0.0.weight' | |
if pth_key in controlnet_data: | |
pth = True | |
key = pth_key | |
prefix = "control_model." | |
elif key in controlnet_data: | |
prefix = "" | |
else: | |
raise Exception("Unexpected T2IAdapter format for ControlNet++ model. Something is very wrong.") | |
if controlnet_config is None: | |
model_config = comfy.model_detection.model_config_from_unet(controlnet_data, prefix, True) | |
supported_inference_dtypes = model_config.supported_inference_dtypes | |
controlnet_config = model_config.unet_config | |
load_device = comfy.model_management.get_torch_device() | |
if supported_inference_dtypes is None: | |
unet_dtype = comfy.model_management.unet_dtype() | |
else: | |
unet_dtype = comfy.model_management.unet_dtype(supported_dtypes=supported_inference_dtypes) | |
manual_cast_dtype = comfy.model_management.unet_manual_cast(unet_dtype, load_device) | |
if manual_cast_dtype is not None: | |
controlnet_config["operations"] = comfy.ops.manual_cast | |
controlnet_config["dtype"] = unet_dtype | |
controlnet_config.pop("out_channels") | |
controlnet_config["hint_channels"] = controlnet_data["{}input_hint_block.0.weight".format(prefix)].shape[1] | |
control_model = ControlNetPlusPlus(**controlnet_config) | |
if pth: | |
if 'difference' in controlnet_data: | |
if model is not None: | |
comfy.model_management.load_models_gpu([model]) | |
model_sd = model.model_state_dict() | |
for x in controlnet_data: | |
c_m = "control_model." | |
if x.startswith(c_m): | |
sd_key = "diffusion_model.{}".format(x[len(c_m):]) | |
if sd_key in model_sd: | |
cd = controlnet_data[x] | |
cd += model_sd[sd_key].type(cd.dtype).to(cd.device) | |
else: | |
logger.warning("WARNING: Loaded a diff controlnet without a model. It will very likely not work.") | |
class WeightsLoader(torch.nn.Module): | |
pass | |
w = WeightsLoader() | |
w.control_model = control_model | |
missing, unexpected = w.load_state_dict(controlnet_data, strict=False) | |
else: | |
missing, unexpected = control_model.load_state_dict(controlnet_data, strict=False) | |
if len(missing) > 0: | |
logger.warning("missing ControlNet++ keys: {}".format(missing)) | |
if len(unexpected) > 0: | |
logger.debug("unexpected ControlNet++ keys: {}".format(unexpected)) | |
global_average_pooling = False | |
filename = os.path.splitext(ckpt_path)[0] | |
if filename.endswith("_shuffle") or filename.endswith("_shuffle_fp16"): #TODO: smarter way of enabling global_average_pooling | |
global_average_pooling = True | |
control = ControlNetPlusPlusAdvanced(control_model, timestep_keyframes=timestep_keyframe, global_average_pooling=global_average_pooling, load_device=load_device, manual_cast_dtype=manual_cast_dtype) | |
return control | |