Spaces:
Running
Running
from typing import Union | |
import numpy as np | |
from collections.abc import Iterable | |
from .utils import ControlWeights, TimestepKeyframe, TimestepKeyframeGroup, LatentKeyframe, LatentKeyframeGroup, BIGMIN, BIGMAX | |
from .utils import StrengthInterpolation as SI | |
from .logger import logger | |
class TimestepKeyframeNode: | |
OUTDATED_DUMMY = -39 | |
def INPUT_TYPES(s): | |
return { | |
"required": { | |
"start_percent": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001}, ), | |
}, | |
"optional": { | |
"prev_timestep_kf": ("TIMESTEP_KEYFRAME", ), | |
"strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ), | |
"cn_weights": ("CONTROL_NET_WEIGHTS", ), | |
"latent_keyframe": ("LATENT_KEYFRAME", ), | |
"null_latent_kf_strength": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 10.0, "step": 0.001}, ), | |
"inherit_missing": ("BOOLEAN", {"default": True}, ), | |
"guarantee_steps": ("INT", {"default": 1, "min": 0, "max": BIGMAX}), | |
"mask_optional": ("MASK", ), | |
"autosize": ("ACNAUTOSIZE", {"padding": 0}), | |
} | |
} | |
RETURN_NAMES = ("TIMESTEP_KF", ) | |
RETURN_TYPES = ("TIMESTEP_KEYFRAME", ) | |
FUNCTION = "load_keyframe" | |
CATEGORY = "Adv-ControlNet ππ π π /keyframes" | |
def load_keyframe(self, | |
start_percent: float, | |
strength: float=1.0, | |
cn_weights: ControlWeights=None, control_net_weights: ControlWeights=None, # old name | |
latent_keyframe: LatentKeyframeGroup=None, | |
prev_timestep_kf: TimestepKeyframeGroup=None, prev_timestep_keyframe: TimestepKeyframeGroup=None, # old name | |
null_latent_kf_strength: float=0.0, | |
inherit_missing=True, | |
guarantee_steps=OUTDATED_DUMMY, | |
guarantee_usage=True, # old input | |
mask_optional=None,): | |
# if using outdated dummy value, means node on workflow is outdated and should appropriately convert behavior | |
if guarantee_steps == self.OUTDATED_DUMMY: | |
guarantee_steps = int(guarantee_usage) | |
control_net_weights = control_net_weights if control_net_weights else cn_weights | |
prev_timestep_keyframe = prev_timestep_keyframe if prev_timestep_keyframe else prev_timestep_kf | |
if not prev_timestep_keyframe: | |
prev_timestep_keyframe = TimestepKeyframeGroup() | |
else: | |
prev_timestep_keyframe = prev_timestep_keyframe.clone() | |
keyframe = TimestepKeyframe(start_percent=start_percent, strength=strength, null_latent_kf_strength=null_latent_kf_strength, | |
control_weights=control_net_weights, latent_keyframes=latent_keyframe, inherit_missing=inherit_missing, | |
guarantee_steps=guarantee_steps, mask_hint_orig=mask_optional) | |
prev_timestep_keyframe.add(keyframe) | |
return (prev_timestep_keyframe,) | |
class TimestepKeyframeInterpolationNode: | |
def INPUT_TYPES(s): | |
return { | |
"required": { | |
"start_percent": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001},), | |
"end_percent": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001}), | |
"strength_start": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001},), | |
"strength_end": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001},), | |
"interpolation": (SI._LIST, ), | |
"intervals": ("INT", {"default": 50, "min": 2, "max": 100, "step": 1}), | |
}, | |
"optional": { | |
"prev_timestep_kf": ("TIMESTEP_KEYFRAME", ), | |
"cn_weights": ("CONTROL_NET_WEIGHTS", ), | |
"latent_keyframe": ("LATENT_KEYFRAME", ), | |
"null_latent_kf_strength": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 10.0, "step": 0.001},), | |
"inherit_missing": ("BOOLEAN", {"default": True},), | |
"mask_optional": ("MASK", ), | |
"print_keyframes": ("BOOLEAN", {"default": False}), | |
"autosize": ("ACNAUTOSIZE", {"padding": 50}), | |
} | |
} | |
RETURN_NAMES = ("TIMESTEP_KF", ) | |
RETURN_TYPES = ("TIMESTEP_KEYFRAME", ) | |
FUNCTION = "load_keyframe" | |
CATEGORY = "Adv-ControlNet ππ π π /keyframes" | |
def load_keyframe(self, | |
start_percent: float, end_percent: float, | |
strength_start: float, strength_end: float, interpolation: str, intervals: int, | |
cn_weights: ControlWeights=None, | |
latent_keyframe: LatentKeyframeGroup=None, | |
prev_timestep_kf: TimestepKeyframeGroup=None, | |
null_latent_kf_strength: float=0.0, | |
inherit_missing=True, | |
guarantee_steps=1, | |
mask_optional=None, print_keyframes=False): | |
if not prev_timestep_kf: | |
prev_timestep_kf = TimestepKeyframeGroup() | |
else: | |
prev_timestep_kf = prev_timestep_kf.clone() | |
percents = SI.get_weights(num_from=start_percent, num_to=end_percent, length=intervals, method=SI.LINEAR) | |
strengths = SI.get_weights(num_from=strength_start, num_to=strength_end, length=intervals, method=interpolation) | |
is_first = True | |
for percent, strength in zip(percents, strengths): | |
guarantee_steps = 0 | |
if is_first: | |
guarantee_steps = 1 | |
is_first = False | |
prev_timestep_kf.add(TimestepKeyframe(start_percent=percent, strength=strength, null_latent_kf_strength=null_latent_kf_strength, | |
control_weights=cn_weights, latent_keyframes=latent_keyframe, inherit_missing=inherit_missing, | |
guarantee_steps=guarantee_steps, mask_hint_orig=mask_optional)) | |
if print_keyframes: | |
logger.info(f"TimestepKeyframe - start_percent:{percent} = {strength}") | |
return (prev_timestep_kf,) | |
class TimestepKeyframeFromStrengthListNode: | |
def INPUT_TYPES(s): | |
return { | |
"required": { | |
"float_strengths": ("FLOAT", {"default": -1, "min": -1, "step": 0.001, "forceInput": True}), | |
"start_percent": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001},), | |
"end_percent": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001}), | |
}, | |
"optional": { | |
"prev_timestep_kf": ("TIMESTEP_KEYFRAME", ), | |
"cn_weights": ("CONTROL_NET_WEIGHTS", ), | |
"latent_keyframe": ("LATENT_KEYFRAME", ), | |
"null_latent_kf_strength": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 10.0, "step": 0.001},), | |
"inherit_missing": ("BOOLEAN", {"default": True},), | |
"mask_optional": ("MASK", ), | |
"print_keyframes": ("BOOLEAN", {"default": False}), | |
"autosize": ("ACNAUTOSIZE", {"padding": 0}), | |
} | |
} | |
RETURN_NAMES = ("TIMESTEP_KF", ) | |
RETURN_TYPES = ("TIMESTEP_KEYFRAME", ) | |
FUNCTION = "load_keyframe" | |
CATEGORY = "Adv-ControlNet ππ π π /keyframes" | |
def load_keyframe(self, | |
start_percent: float, end_percent: float, | |
float_strengths: float, | |
cn_weights: ControlWeights=None, | |
latent_keyframe: LatentKeyframeGroup=None, | |
prev_timestep_kf: TimestepKeyframeGroup=None, | |
null_latent_kf_strength: float=0.0, | |
inherit_missing=True, | |
guarantee_steps=1, | |
mask_optional=None, print_keyframes=False): | |
if not prev_timestep_kf: | |
prev_timestep_kf = TimestepKeyframeGroup() | |
else: | |
prev_timestep_kf = prev_timestep_kf.clone() | |
if type(float_strengths) in (float, int): | |
float_strengths = [float(float_strengths)] | |
elif isinstance(float_strengths, Iterable): | |
pass | |
else: | |
raise Exception(f"strengths_float must be either an iterable input or a float, but was {type(float_strengths).__repr__}.") | |
percents = SI.get_weights(num_from=start_percent, num_to=end_percent, length=len(float_strengths), method=SI.LINEAR) | |
is_first = True | |
for percent, strength in zip(percents, float_strengths): | |
guarantee_steps = 0 | |
if is_first: | |
guarantee_steps = 1 | |
is_first = False | |
prev_timestep_kf.add(TimestepKeyframe(start_percent=percent, strength=strength, null_latent_kf_strength=null_latent_kf_strength, | |
control_weights=cn_weights, latent_keyframes=latent_keyframe, inherit_missing=inherit_missing, | |
guarantee_steps=guarantee_steps, mask_hint_orig=mask_optional)) | |
if print_keyframes: | |
logger.info(f"TimestepKeyframe - start_percent:{percent} = {strength}") | |
return (prev_timestep_kf,) | |
class LatentKeyframeNode: | |
def INPUT_TYPES(s): | |
return { | |
"required": { | |
"batch_index": ("INT", {"default": 0, "min": BIGMIN, "max": BIGMAX, "step": 1}), | |
"strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ), | |
}, | |
"optional": { | |
"prev_latent_kf": ("LATENT_KEYFRAME", ), | |
"autosize": ("ACNAUTOSIZE", {"padding": 0}), | |
} | |
} | |
RETURN_NAMES = ("LATENT_KF", ) | |
RETURN_TYPES = ("LATENT_KEYFRAME", ) | |
FUNCTION = "load_keyframe" | |
CATEGORY = "Adv-ControlNet ππ π π /keyframes" | |
def load_keyframe(self, | |
batch_index: int, | |
strength: float, | |
prev_latent_kf: LatentKeyframeGroup=None, | |
prev_latent_keyframe: LatentKeyframeGroup=None, # old name | |
): | |
prev_latent_keyframe = prev_latent_keyframe if prev_latent_keyframe else prev_latent_kf | |
if not prev_latent_keyframe: | |
prev_latent_keyframe = LatentKeyframeGroup() | |
else: | |
prev_latent_keyframe = prev_latent_keyframe.clone() | |
keyframe = LatentKeyframe(batch_index, strength) | |
prev_latent_keyframe.add(keyframe) | |
return (prev_latent_keyframe,) | |
class LatentKeyframeGroupNode: | |
def INPUT_TYPES(s): | |
return { | |
"required": { | |
"index_strengths": ("STRING", {"multiline": True, "default": ""}), | |
}, | |
"optional": { | |
"prev_latent_kf": ("LATENT_KEYFRAME", ), | |
"latent_optional": ("LATENT", ), | |
"print_keyframes": ("BOOLEAN", {"default": False}), | |
"autosize": ("ACNAUTOSIZE", {"padding": 35}), | |
} | |
} | |
RETURN_NAMES = ("LATENT_KF", ) | |
RETURN_TYPES = ("LATENT_KEYFRAME", ) | |
FUNCTION = "load_keyframes" | |
CATEGORY = "Adv-ControlNet ππ π π /keyframes" | |
def validate_index(self, index: int, latent_count: int = 0, is_range: bool = False, allow_negative = False) -> int: | |
# if part of range, do nothing | |
if is_range: | |
return index | |
# otherwise, validate index | |
# validate not out of range - only when latent_count is passed in | |
if latent_count > 0 and index > latent_count-1: | |
raise IndexError(f"Index '{index}' out of range for the total {latent_count} latents.") | |
# if negative, validate not out of range | |
if index < 0: | |
if not allow_negative: | |
raise IndexError(f"Negative indeces not allowed, but was {index}.") | |
conv_index = latent_count+index | |
if conv_index < 0: | |
raise IndexError(f"Index '{index}', converted to '{conv_index}' out of range for the total {latent_count} latents.") | |
index = conv_index | |
return index | |
def convert_to_index_int(self, raw_index: str, latent_count: int = 0, is_range: bool = False, allow_negative = False) -> int: | |
try: | |
return self.validate_index(int(raw_index), latent_count=latent_count, is_range=is_range, allow_negative=allow_negative) | |
except ValueError as e: | |
raise ValueError(f"index '{raw_index}' must be an integer.", e) | |
def convert_to_latent_keyframes(self, latent_indeces: str, latent_count: int) -> set[LatentKeyframe]: | |
if not latent_indeces: | |
return set() | |
int_latent_indeces = [i for i in range(0, latent_count)] | |
allow_negative = latent_count > 0 | |
chosen_indeces = set() | |
# parse string - allow positive ints, negative ints, and ranges separated by ':' | |
groups = latent_indeces.split(",") | |
groups = [g.strip() for g in groups] | |
for g in groups: | |
# parse strengths - default to 1.0 if no strength given | |
strength = 1.0 | |
if '=' in g: | |
g, strength_str = g.split("=", 1) | |
g = g.strip() | |
try: | |
strength = float(strength_str.strip()) | |
except ValueError as e: | |
raise ValueError(f"strength '{strength_str}' must be a float.", e) | |
if strength < 0: | |
raise ValueError(f"Strength '{strength}' cannot be negative.") | |
# parse range of indeces (e.g. 2:16) | |
if ':' in g: | |
index_range = g.split(":", 1) | |
index_range = [r.strip() for r in index_range] | |
start_index = self.convert_to_index_int(index_range[0], latent_count=latent_count, is_range=True, allow_negative=allow_negative) | |
end_index = self.convert_to_index_int(index_range[1], latent_count=latent_count, is_range=True, allow_negative=allow_negative) | |
# if latents were passed in, base indeces on known latent count | |
if len(int_latent_indeces) > 0: | |
for i in int_latent_indeces[start_index:end_index]: | |
chosen_indeces.add(LatentKeyframe(i, strength)) | |
# otherwise, assume indeces are valid | |
else: | |
for i in range(start_index, end_index): | |
chosen_indeces.add(LatentKeyframe(i, strength)) | |
# parse individual indeces | |
else: | |
chosen_indeces.add(LatentKeyframe(self.convert_to_index_int(g, latent_count=latent_count, allow_negative=allow_negative), strength)) | |
return chosen_indeces | |
def load_keyframes(self, | |
index_strengths: str, | |
prev_latent_kf: LatentKeyframeGroup=None, | |
prev_latent_keyframe: LatentKeyframeGroup=None, # old name | |
latent_image_opt=None, | |
print_keyframes=False): | |
prev_latent_keyframe = prev_latent_keyframe if prev_latent_keyframe else prev_latent_kf | |
if not prev_latent_keyframe: | |
prev_latent_keyframe = LatentKeyframeGroup() | |
else: | |
prev_latent_keyframe = prev_latent_keyframe.clone() | |
curr_latent_keyframe = LatentKeyframeGroup() | |
latent_count = -1 | |
if latent_image_opt: | |
latent_count = latent_image_opt['samples'].size()[0] | |
latent_keyframes = self.convert_to_latent_keyframes(index_strengths, latent_count=latent_count) | |
for latent_keyframe in latent_keyframes: | |
curr_latent_keyframe.add(latent_keyframe) | |
if print_keyframes: | |
for keyframe in curr_latent_keyframe.keyframes: | |
logger.info(f"LatentKeyframe {keyframe.batch_index}={keyframe.strength}") | |
# replace values with prev_latent_keyframes | |
for latent_keyframe in prev_latent_keyframe.keyframes: | |
curr_latent_keyframe.add(latent_keyframe) | |
return (curr_latent_keyframe,) | |
class LatentKeyframeInterpolationNode: | |
def INPUT_TYPES(s): | |
return { | |
"required": { | |
"batch_index_from": ("INT", {"default": 0, "min": BIGMIN, "max": BIGMAX, "step": 1}), | |
"batch_index_to_excl": ("INT", {"default": 0, "min": BIGMIN, "max": BIGMAX, "step": 1}), | |
"strength_from": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ), | |
"strength_to": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ), | |
"interpolation": (SI._LIST, ), | |
}, | |
"optional": { | |
"prev_latent_kf": ("LATENT_KEYFRAME", ), | |
"print_keyframes": ("BOOLEAN", {"default": False}), | |
"autosize": ("ACNAUTOSIZE", {"padding": 50}), | |
} | |
} | |
RETURN_NAMES = ("LATENT_KF", ) | |
RETURN_TYPES = ("LATENT_KEYFRAME", ) | |
FUNCTION = "load_keyframe" | |
CATEGORY = "Adv-ControlNet ππ π π /keyframes" | |
def load_keyframe(self, | |
batch_index_from: int, | |
strength_from: float, | |
batch_index_to_excl: int, | |
strength_to: float, | |
interpolation: str, | |
prev_latent_kf: LatentKeyframeGroup=None, | |
prev_latent_keyframe: LatentKeyframeGroup=None, # old name | |
print_keyframes=False): | |
if (batch_index_from > batch_index_to_excl): | |
raise ValueError("batch_index_from must be less than or equal to batch_index_to.") | |
if (batch_index_from < 0 and batch_index_to_excl >= 0): | |
raise ValueError("batch_index_from and batch_index_to must be either both positive or both negative.") | |
prev_latent_keyframe = prev_latent_keyframe if prev_latent_keyframe else prev_latent_kf | |
if not prev_latent_keyframe: | |
prev_latent_keyframe = LatentKeyframeGroup() | |
else: | |
prev_latent_keyframe = prev_latent_keyframe.clone() | |
curr_latent_keyframe = LatentKeyframeGroup() | |
steps = batch_index_to_excl - batch_index_from | |
diff = strength_to - strength_from | |
if interpolation == SI.LINEAR: | |
weights = np.linspace(strength_from, strength_to, steps) | |
elif interpolation == SI.EASE_IN: | |
index = np.linspace(0, 1, steps) | |
weights = diff * np.power(index, 2) + strength_from | |
elif interpolation == SI.EASE_OUT: | |
index = np.linspace(0, 1, steps) | |
weights = diff * (1 - np.power(1 - index, 2)) + strength_from | |
elif interpolation == SI.EASE_IN_OUT: | |
index = np.linspace(0, 1, steps) | |
weights = diff * ((1 - np.cos(index * np.pi)) / 2) + strength_from | |
for i in range(steps): | |
keyframe = LatentKeyframe(batch_index_from + i, float(weights[i])) | |
curr_latent_keyframe.add(keyframe) | |
if print_keyframes: | |
for keyframe in curr_latent_keyframe.keyframes: | |
logger.info(f"LatentKeyframe {keyframe.batch_index}={keyframe.strength}") | |
# replace values with prev_latent_keyframes | |
for latent_keyframe in prev_latent_keyframe.keyframes: | |
curr_latent_keyframe.add(latent_keyframe) | |
return (curr_latent_keyframe,) | |
class LatentKeyframeBatchedGroupNode: | |
def INPUT_TYPES(s): | |
return { | |
"required": { | |
"float_strengths": ("FLOAT", {"default": -1, "min": -1, "step": 0.001, "forceInput": True}), | |
}, | |
"optional": { | |
"prev_latent_kf": ("LATENT_KEYFRAME", ), | |
"print_keyframes": ("BOOLEAN", {"default": False}), | |
"autosize": ("ACNAUTOSIZE", {"padding": 0}), | |
} | |
} | |
RETURN_NAMES = ("LATENT_KF", ) | |
RETURN_TYPES = ("LATENT_KEYFRAME", ) | |
FUNCTION = "load_keyframe" | |
CATEGORY = "Adv-ControlNet ππ π π /keyframes" | |
def load_keyframe(self, float_strengths: Union[float, list[float]], | |
prev_latent_kf: LatentKeyframeGroup=None, | |
prev_latent_keyframe: LatentKeyframeGroup=None, # old name | |
print_keyframes=False): | |
prev_latent_keyframe = prev_latent_keyframe if prev_latent_keyframe else prev_latent_kf | |
if not prev_latent_keyframe: | |
prev_latent_keyframe = LatentKeyframeGroup() | |
else: | |
prev_latent_keyframe = prev_latent_keyframe.clone() | |
curr_latent_keyframe = LatentKeyframeGroup() | |
# if received a normal float input, do nothing | |
if type(float_strengths) in (float, int): | |
logger.info("No batched float_strengths passed into Latent Keyframe Batch Group node; will not create any new keyframes.") | |
# if iterable, attempt to create LatentKeyframes with chosen strengths | |
elif isinstance(float_strengths, Iterable): | |
for idx, strength in enumerate(float_strengths): | |
keyframe = LatentKeyframe(idx, strength) | |
curr_latent_keyframe.add(keyframe) | |
else: | |
raise ValueError(f"Expected strengths to be an iterable input, but was {type(float_strengths).__repr__}.") | |
if print_keyframes: | |
for keyframe in curr_latent_keyframe.keyframes: | |
logger.info(f"LatentKeyframe {keyframe.batch_index}={keyframe.strength}") | |
# replace values with prev_latent_keyframes | |
for latent_keyframe in prev_latent_keyframe.keyframes: | |
curr_latent_keyframe.add(latent_keyframe) | |
return (curr_latent_keyframe,) | |