gartajackhats1985's picture
Upload 45 files
028694a verified
raw
history blame
22.4 kB
from typing import Union
import numpy as np
from collections.abc import Iterable
from .utils import ControlWeights, TimestepKeyframe, TimestepKeyframeGroup, LatentKeyframe, LatentKeyframeGroup, BIGMIN, BIGMAX
from .utils import StrengthInterpolation as SI
from .logger import logger
class TimestepKeyframeNode:
OUTDATED_DUMMY = -39
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"start_percent": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001}, ),
},
"optional": {
"prev_timestep_kf": ("TIMESTEP_KEYFRAME", ),
"strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
"cn_weights": ("CONTROL_NET_WEIGHTS", ),
"latent_keyframe": ("LATENT_KEYFRAME", ),
"null_latent_kf_strength": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
"inherit_missing": ("BOOLEAN", {"default": True}, ),
"guarantee_steps": ("INT", {"default": 1, "min": 0, "max": BIGMAX}),
"mask_optional": ("MASK", ),
"autosize": ("ACNAUTOSIZE", {"padding": 0}),
}
}
RETURN_NAMES = ("TIMESTEP_KF", )
RETURN_TYPES = ("TIMESTEP_KEYFRAME", )
FUNCTION = "load_keyframe"
CATEGORY = "Adv-ControlNet πŸ›‚πŸ…πŸ…’πŸ…/keyframes"
def load_keyframe(self,
start_percent: float,
strength: float=1.0,
cn_weights: ControlWeights=None, control_net_weights: ControlWeights=None, # old name
latent_keyframe: LatentKeyframeGroup=None,
prev_timestep_kf: TimestepKeyframeGroup=None, prev_timestep_keyframe: TimestepKeyframeGroup=None, # old name
null_latent_kf_strength: float=0.0,
inherit_missing=True,
guarantee_steps=OUTDATED_DUMMY,
guarantee_usage=True, # old input
mask_optional=None,):
# if using outdated dummy value, means node on workflow is outdated and should appropriately convert behavior
if guarantee_steps == self.OUTDATED_DUMMY:
guarantee_steps = int(guarantee_usage)
control_net_weights = control_net_weights if control_net_weights else cn_weights
prev_timestep_keyframe = prev_timestep_keyframe if prev_timestep_keyframe else prev_timestep_kf
if not prev_timestep_keyframe:
prev_timestep_keyframe = TimestepKeyframeGroup()
else:
prev_timestep_keyframe = prev_timestep_keyframe.clone()
keyframe = TimestepKeyframe(start_percent=start_percent, strength=strength, null_latent_kf_strength=null_latent_kf_strength,
control_weights=control_net_weights, latent_keyframes=latent_keyframe, inherit_missing=inherit_missing,
guarantee_steps=guarantee_steps, mask_hint_orig=mask_optional)
prev_timestep_keyframe.add(keyframe)
return (prev_timestep_keyframe,)
class TimestepKeyframeInterpolationNode:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"start_percent": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001},),
"end_percent": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001}),
"strength_start": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001},),
"strength_end": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001},),
"interpolation": (SI._LIST, ),
"intervals": ("INT", {"default": 50, "min": 2, "max": 100, "step": 1}),
},
"optional": {
"prev_timestep_kf": ("TIMESTEP_KEYFRAME", ),
"cn_weights": ("CONTROL_NET_WEIGHTS", ),
"latent_keyframe": ("LATENT_KEYFRAME", ),
"null_latent_kf_strength": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 10.0, "step": 0.001},),
"inherit_missing": ("BOOLEAN", {"default": True},),
"mask_optional": ("MASK", ),
"print_keyframes": ("BOOLEAN", {"default": False}),
"autosize": ("ACNAUTOSIZE", {"padding": 50}),
}
}
RETURN_NAMES = ("TIMESTEP_KF", )
RETURN_TYPES = ("TIMESTEP_KEYFRAME", )
FUNCTION = "load_keyframe"
CATEGORY = "Adv-ControlNet πŸ›‚πŸ…πŸ…’πŸ…/keyframes"
def load_keyframe(self,
start_percent: float, end_percent: float,
strength_start: float, strength_end: float, interpolation: str, intervals: int,
cn_weights: ControlWeights=None,
latent_keyframe: LatentKeyframeGroup=None,
prev_timestep_kf: TimestepKeyframeGroup=None,
null_latent_kf_strength: float=0.0,
inherit_missing=True,
guarantee_steps=1,
mask_optional=None, print_keyframes=False):
if not prev_timestep_kf:
prev_timestep_kf = TimestepKeyframeGroup()
else:
prev_timestep_kf = prev_timestep_kf.clone()
percents = SI.get_weights(num_from=start_percent, num_to=end_percent, length=intervals, method=SI.LINEAR)
strengths = SI.get_weights(num_from=strength_start, num_to=strength_end, length=intervals, method=interpolation)
is_first = True
for percent, strength in zip(percents, strengths):
guarantee_steps = 0
if is_first:
guarantee_steps = 1
is_first = False
prev_timestep_kf.add(TimestepKeyframe(start_percent=percent, strength=strength, null_latent_kf_strength=null_latent_kf_strength,
control_weights=cn_weights, latent_keyframes=latent_keyframe, inherit_missing=inherit_missing,
guarantee_steps=guarantee_steps, mask_hint_orig=mask_optional))
if print_keyframes:
logger.info(f"TimestepKeyframe - start_percent:{percent} = {strength}")
return (prev_timestep_kf,)
class TimestepKeyframeFromStrengthListNode:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"float_strengths": ("FLOAT", {"default": -1, "min": -1, "step": 0.001, "forceInput": True}),
"start_percent": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001},),
"end_percent": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001}),
},
"optional": {
"prev_timestep_kf": ("TIMESTEP_KEYFRAME", ),
"cn_weights": ("CONTROL_NET_WEIGHTS", ),
"latent_keyframe": ("LATENT_KEYFRAME", ),
"null_latent_kf_strength": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 10.0, "step": 0.001},),
"inherit_missing": ("BOOLEAN", {"default": True},),
"mask_optional": ("MASK", ),
"print_keyframes": ("BOOLEAN", {"default": False}),
"autosize": ("ACNAUTOSIZE", {"padding": 0}),
}
}
RETURN_NAMES = ("TIMESTEP_KF", )
RETURN_TYPES = ("TIMESTEP_KEYFRAME", )
FUNCTION = "load_keyframe"
CATEGORY = "Adv-ControlNet πŸ›‚πŸ…πŸ…’πŸ…/keyframes"
def load_keyframe(self,
start_percent: float, end_percent: float,
float_strengths: float,
cn_weights: ControlWeights=None,
latent_keyframe: LatentKeyframeGroup=None,
prev_timestep_kf: TimestepKeyframeGroup=None,
null_latent_kf_strength: float=0.0,
inherit_missing=True,
guarantee_steps=1,
mask_optional=None, print_keyframes=False):
if not prev_timestep_kf:
prev_timestep_kf = TimestepKeyframeGroup()
else:
prev_timestep_kf = prev_timestep_kf.clone()
if type(float_strengths) in (float, int):
float_strengths = [float(float_strengths)]
elif isinstance(float_strengths, Iterable):
pass
else:
raise Exception(f"strengths_float must be either an iterable input or a float, but was {type(float_strengths).__repr__}.")
percents = SI.get_weights(num_from=start_percent, num_to=end_percent, length=len(float_strengths), method=SI.LINEAR)
is_first = True
for percent, strength in zip(percents, float_strengths):
guarantee_steps = 0
if is_first:
guarantee_steps = 1
is_first = False
prev_timestep_kf.add(TimestepKeyframe(start_percent=percent, strength=strength, null_latent_kf_strength=null_latent_kf_strength,
control_weights=cn_weights, latent_keyframes=latent_keyframe, inherit_missing=inherit_missing,
guarantee_steps=guarantee_steps, mask_hint_orig=mask_optional))
if print_keyframes:
logger.info(f"TimestepKeyframe - start_percent:{percent} = {strength}")
return (prev_timestep_kf,)
class LatentKeyframeNode:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"batch_index": ("INT", {"default": 0, "min": BIGMIN, "max": BIGMAX, "step": 1}),
"strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
},
"optional": {
"prev_latent_kf": ("LATENT_KEYFRAME", ),
"autosize": ("ACNAUTOSIZE", {"padding": 0}),
}
}
RETURN_NAMES = ("LATENT_KF", )
RETURN_TYPES = ("LATENT_KEYFRAME", )
FUNCTION = "load_keyframe"
CATEGORY = "Adv-ControlNet πŸ›‚πŸ…πŸ…’πŸ…/keyframes"
def load_keyframe(self,
batch_index: int,
strength: float,
prev_latent_kf: LatentKeyframeGroup=None,
prev_latent_keyframe: LatentKeyframeGroup=None, # old name
):
prev_latent_keyframe = prev_latent_keyframe if prev_latent_keyframe else prev_latent_kf
if not prev_latent_keyframe:
prev_latent_keyframe = LatentKeyframeGroup()
else:
prev_latent_keyframe = prev_latent_keyframe.clone()
keyframe = LatentKeyframe(batch_index, strength)
prev_latent_keyframe.add(keyframe)
return (prev_latent_keyframe,)
class LatentKeyframeGroupNode:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"index_strengths": ("STRING", {"multiline": True, "default": ""}),
},
"optional": {
"prev_latent_kf": ("LATENT_KEYFRAME", ),
"latent_optional": ("LATENT", ),
"print_keyframes": ("BOOLEAN", {"default": False}),
"autosize": ("ACNAUTOSIZE", {"padding": 35}),
}
}
RETURN_NAMES = ("LATENT_KF", )
RETURN_TYPES = ("LATENT_KEYFRAME", )
FUNCTION = "load_keyframes"
CATEGORY = "Adv-ControlNet πŸ›‚πŸ…πŸ…’πŸ…/keyframes"
def validate_index(self, index: int, latent_count: int = 0, is_range: bool = False, allow_negative = False) -> int:
# if part of range, do nothing
if is_range:
return index
# otherwise, validate index
# validate not out of range - only when latent_count is passed in
if latent_count > 0 and index > latent_count-1:
raise IndexError(f"Index '{index}' out of range for the total {latent_count} latents.")
# if negative, validate not out of range
if index < 0:
if not allow_negative:
raise IndexError(f"Negative indeces not allowed, but was {index}.")
conv_index = latent_count+index
if conv_index < 0:
raise IndexError(f"Index '{index}', converted to '{conv_index}' out of range for the total {latent_count} latents.")
index = conv_index
return index
def convert_to_index_int(self, raw_index: str, latent_count: int = 0, is_range: bool = False, allow_negative = False) -> int:
try:
return self.validate_index(int(raw_index), latent_count=latent_count, is_range=is_range, allow_negative=allow_negative)
except ValueError as e:
raise ValueError(f"index '{raw_index}' must be an integer.", e)
def convert_to_latent_keyframes(self, latent_indeces: str, latent_count: int) -> set[LatentKeyframe]:
if not latent_indeces:
return set()
int_latent_indeces = [i for i in range(0, latent_count)]
allow_negative = latent_count > 0
chosen_indeces = set()
# parse string - allow positive ints, negative ints, and ranges separated by ':'
groups = latent_indeces.split(",")
groups = [g.strip() for g in groups]
for g in groups:
# parse strengths - default to 1.0 if no strength given
strength = 1.0
if '=' in g:
g, strength_str = g.split("=", 1)
g = g.strip()
try:
strength = float(strength_str.strip())
except ValueError as e:
raise ValueError(f"strength '{strength_str}' must be a float.", e)
if strength < 0:
raise ValueError(f"Strength '{strength}' cannot be negative.")
# parse range of indeces (e.g. 2:16)
if ':' in g:
index_range = g.split(":", 1)
index_range = [r.strip() for r in index_range]
start_index = self.convert_to_index_int(index_range[0], latent_count=latent_count, is_range=True, allow_negative=allow_negative)
end_index = self.convert_to_index_int(index_range[1], latent_count=latent_count, is_range=True, allow_negative=allow_negative)
# if latents were passed in, base indeces on known latent count
if len(int_latent_indeces) > 0:
for i in int_latent_indeces[start_index:end_index]:
chosen_indeces.add(LatentKeyframe(i, strength))
# otherwise, assume indeces are valid
else:
for i in range(start_index, end_index):
chosen_indeces.add(LatentKeyframe(i, strength))
# parse individual indeces
else:
chosen_indeces.add(LatentKeyframe(self.convert_to_index_int(g, latent_count=latent_count, allow_negative=allow_negative), strength))
return chosen_indeces
def load_keyframes(self,
index_strengths: str,
prev_latent_kf: LatentKeyframeGroup=None,
prev_latent_keyframe: LatentKeyframeGroup=None, # old name
latent_image_opt=None,
print_keyframes=False):
prev_latent_keyframe = prev_latent_keyframe if prev_latent_keyframe else prev_latent_kf
if not prev_latent_keyframe:
prev_latent_keyframe = LatentKeyframeGroup()
else:
prev_latent_keyframe = prev_latent_keyframe.clone()
curr_latent_keyframe = LatentKeyframeGroup()
latent_count = -1
if latent_image_opt:
latent_count = latent_image_opt['samples'].size()[0]
latent_keyframes = self.convert_to_latent_keyframes(index_strengths, latent_count=latent_count)
for latent_keyframe in latent_keyframes:
curr_latent_keyframe.add(latent_keyframe)
if print_keyframes:
for keyframe in curr_latent_keyframe.keyframes:
logger.info(f"LatentKeyframe {keyframe.batch_index}={keyframe.strength}")
# replace values with prev_latent_keyframes
for latent_keyframe in prev_latent_keyframe.keyframes:
curr_latent_keyframe.add(latent_keyframe)
return (curr_latent_keyframe,)
class LatentKeyframeInterpolationNode:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"batch_index_from": ("INT", {"default": 0, "min": BIGMIN, "max": BIGMAX, "step": 1}),
"batch_index_to_excl": ("INT", {"default": 0, "min": BIGMIN, "max": BIGMAX, "step": 1}),
"strength_from": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
"strength_to": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
"interpolation": (SI._LIST, ),
},
"optional": {
"prev_latent_kf": ("LATENT_KEYFRAME", ),
"print_keyframes": ("BOOLEAN", {"default": False}),
"autosize": ("ACNAUTOSIZE", {"padding": 50}),
}
}
RETURN_NAMES = ("LATENT_KF", )
RETURN_TYPES = ("LATENT_KEYFRAME", )
FUNCTION = "load_keyframe"
CATEGORY = "Adv-ControlNet πŸ›‚πŸ…πŸ…’πŸ…/keyframes"
def load_keyframe(self,
batch_index_from: int,
strength_from: float,
batch_index_to_excl: int,
strength_to: float,
interpolation: str,
prev_latent_kf: LatentKeyframeGroup=None,
prev_latent_keyframe: LatentKeyframeGroup=None, # old name
print_keyframes=False):
if (batch_index_from > batch_index_to_excl):
raise ValueError("batch_index_from must be less than or equal to batch_index_to.")
if (batch_index_from < 0 and batch_index_to_excl >= 0):
raise ValueError("batch_index_from and batch_index_to must be either both positive or both negative.")
prev_latent_keyframe = prev_latent_keyframe if prev_latent_keyframe else prev_latent_kf
if not prev_latent_keyframe:
prev_latent_keyframe = LatentKeyframeGroup()
else:
prev_latent_keyframe = prev_latent_keyframe.clone()
curr_latent_keyframe = LatentKeyframeGroup()
steps = batch_index_to_excl - batch_index_from
diff = strength_to - strength_from
if interpolation == SI.LINEAR:
weights = np.linspace(strength_from, strength_to, steps)
elif interpolation == SI.EASE_IN:
index = np.linspace(0, 1, steps)
weights = diff * np.power(index, 2) + strength_from
elif interpolation == SI.EASE_OUT:
index = np.linspace(0, 1, steps)
weights = diff * (1 - np.power(1 - index, 2)) + strength_from
elif interpolation == SI.EASE_IN_OUT:
index = np.linspace(0, 1, steps)
weights = diff * ((1 - np.cos(index * np.pi)) / 2) + strength_from
for i in range(steps):
keyframe = LatentKeyframe(batch_index_from + i, float(weights[i]))
curr_latent_keyframe.add(keyframe)
if print_keyframes:
for keyframe in curr_latent_keyframe.keyframes:
logger.info(f"LatentKeyframe {keyframe.batch_index}={keyframe.strength}")
# replace values with prev_latent_keyframes
for latent_keyframe in prev_latent_keyframe.keyframes:
curr_latent_keyframe.add(latent_keyframe)
return (curr_latent_keyframe,)
class LatentKeyframeBatchedGroupNode:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"float_strengths": ("FLOAT", {"default": -1, "min": -1, "step": 0.001, "forceInput": True}),
},
"optional": {
"prev_latent_kf": ("LATENT_KEYFRAME", ),
"print_keyframes": ("BOOLEAN", {"default": False}),
"autosize": ("ACNAUTOSIZE", {"padding": 0}),
}
}
RETURN_NAMES = ("LATENT_KF", )
RETURN_TYPES = ("LATENT_KEYFRAME", )
FUNCTION = "load_keyframe"
CATEGORY = "Adv-ControlNet πŸ›‚πŸ…πŸ…’πŸ…/keyframes"
def load_keyframe(self, float_strengths: Union[float, list[float]],
prev_latent_kf: LatentKeyframeGroup=None,
prev_latent_keyframe: LatentKeyframeGroup=None, # old name
print_keyframes=False):
prev_latent_keyframe = prev_latent_keyframe if prev_latent_keyframe else prev_latent_kf
if not prev_latent_keyframe:
prev_latent_keyframe = LatentKeyframeGroup()
else:
prev_latent_keyframe = prev_latent_keyframe.clone()
curr_latent_keyframe = LatentKeyframeGroup()
# if received a normal float input, do nothing
if type(float_strengths) in (float, int):
logger.info("No batched float_strengths passed into Latent Keyframe Batch Group node; will not create any new keyframes.")
# if iterable, attempt to create LatentKeyframes with chosen strengths
elif isinstance(float_strengths, Iterable):
for idx, strength in enumerate(float_strengths):
keyframe = LatentKeyframe(idx, strength)
curr_latent_keyframe.add(keyframe)
else:
raise ValueError(f"Expected strengths to be an iterable input, but was {type(float_strengths).__repr__}.")
if print_keyframes:
for keyframe in curr_latent_keyframe.keyframes:
logger.info(f"LatentKeyframe {keyframe.batch_index}={keyframe.strength}")
# replace values with prev_latent_keyframes
for latent_keyframe in prev_latent_keyframe.keyframes:
curr_latent_keyframe.add(latent_keyframe)
return (curr_latent_keyframe,)