Spaces:
Running
Running
""" Deep Layer Aggregation and DLA w/ Res2Net | |
DLA original adapted from Official Pytorch impl at: | |
DLA Paper: `Deep Layer Aggregation` - https://arxiv.org/abs/1707.06484 | |
Res2Net additions from: https://github.com/gasvn/Res2Net/ | |
Res2Net Paper: `Res2Net: A New Multi-scale Backbone Architecture` - https://arxiv.org/abs/1904.01169 | |
""" | |
import math | |
from typing import List, Optional | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from custom_timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD | |
from .helpers import build_model_with_cfg | |
from .layers import create_classifier | |
from .registry import register_model | |
__all__ = ['DLA'] | |
def _cfg(url='', **kwargs): | |
return { | |
'url': url, | |
'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7), | |
'crop_pct': 0.875, 'interpolation': 'bilinear', | |
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, | |
'first_conv': 'base_layer.0', 'classifier': 'fc', | |
**kwargs | |
} | |
default_cfgs = { | |
'dla34': _cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/dla34-2b83ff04.pth'), | |
'dla46_c': _cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/dla46_c-9b68d685.pth'), | |
'dla46x_c': _cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/dla46x_c-6bc5b5c8.pth'), | |
'dla60x_c': _cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/dla60x_c-a38e054a.pth'), | |
'dla60': _cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/dla60-9e91bd4d.pth'), | |
'dla60x': _cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/dla60x-6818f6bb.pth'), | |
'dla102': _cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/dla102-21f57b54.pth'), | |
'dla102x': _cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/dla102x-7ec0aa2a.pth'), | |
'dla102x2': _cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/dla102x2-ac4239c4.pth'), | |
'dla169': _cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/dla169-7c767967.pth'), | |
'dla60_res2net': _cfg( | |
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-res2net/res2net_dla60_4s-d88db7f9.pth'), | |
'dla60_res2next': _cfg( | |
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-res2net/res2next_dla60_4s-d327927b.pth'), | |
} | |
class DlaBasic(nn.Module): | |
"""DLA Basic""" | |
def __init__(self, inplanes, planes, stride=1, dilation=1, **_): | |
super(DlaBasic, self).__init__() | |
self.conv1 = nn.Conv2d( | |
inplanes, planes, kernel_size=3, stride=stride, padding=dilation, bias=False, dilation=dilation) | |
self.bn1 = nn.BatchNorm2d(planes) | |
self.relu = nn.ReLU(inplace=True) | |
self.conv2 = nn.Conv2d( | |
planes, planes, kernel_size=3, stride=1, padding=dilation, bias=False, dilation=dilation) | |
self.bn2 = nn.BatchNorm2d(planes) | |
self.stride = stride | |
def forward(self, x, shortcut=None, children: Optional[List[torch.Tensor]] = None): | |
if shortcut is None: | |
shortcut = x | |
out = self.conv1(x) | |
out = self.bn1(out) | |
out = self.relu(out) | |
out = self.conv2(out) | |
out = self.bn2(out) | |
out += shortcut | |
out = self.relu(out) | |
return out | |
class DlaBottleneck(nn.Module): | |
"""DLA/DLA-X Bottleneck""" | |
expansion = 2 | |
def __init__(self, inplanes, outplanes, stride=1, dilation=1, cardinality=1, base_width=64): | |
super(DlaBottleneck, self).__init__() | |
self.stride = stride | |
mid_planes = int(math.floor(outplanes * (base_width / 64)) * cardinality) | |
mid_planes = mid_planes // self.expansion | |
self.conv1 = nn.Conv2d(inplanes, mid_planes, kernel_size=1, bias=False) | |
self.bn1 = nn.BatchNorm2d(mid_planes) | |
self.conv2 = nn.Conv2d( | |
mid_planes, mid_planes, kernel_size=3, stride=stride, padding=dilation, | |
bias=False, dilation=dilation, groups=cardinality) | |
self.bn2 = nn.BatchNorm2d(mid_planes) | |
self.conv3 = nn.Conv2d(mid_planes, outplanes, kernel_size=1, bias=False) | |
self.bn3 = nn.BatchNorm2d(outplanes) | |
self.relu = nn.ReLU(inplace=True) | |
def forward(self, x, shortcut: Optional[torch.Tensor] = None, children: Optional[List[torch.Tensor]] = None): | |
if shortcut is None: | |
shortcut = x | |
out = self.conv1(x) | |
out = self.bn1(out) | |
out = self.relu(out) | |
out = self.conv2(out) | |
out = self.bn2(out) | |
out = self.relu(out) | |
out = self.conv3(out) | |
out = self.bn3(out) | |
out += shortcut | |
out = self.relu(out) | |
return out | |
class DlaBottle2neck(nn.Module): | |
""" Res2Net/Res2NeXT DLA Bottleneck | |
Adapted from https://github.com/gasvn/Res2Net/blob/master/dla.py | |
""" | |
expansion = 2 | |
def __init__(self, inplanes, outplanes, stride=1, dilation=1, scale=4, cardinality=8, base_width=4): | |
super(DlaBottle2neck, self).__init__() | |
self.is_first = stride > 1 | |
self.scale = scale | |
mid_planes = int(math.floor(outplanes * (base_width / 64)) * cardinality) | |
mid_planes = mid_planes // self.expansion | |
self.width = mid_planes | |
self.conv1 = nn.Conv2d(inplanes, mid_planes * scale, kernel_size=1, bias=False) | |
self.bn1 = nn.BatchNorm2d(mid_planes * scale) | |
num_scale_convs = max(1, scale - 1) | |
convs = [] | |
bns = [] | |
for _ in range(num_scale_convs): | |
convs.append(nn.Conv2d( | |
mid_planes, mid_planes, kernel_size=3, stride=stride, | |
padding=dilation, dilation=dilation, groups=cardinality, bias=False)) | |
bns.append(nn.BatchNorm2d(mid_planes)) | |
self.convs = nn.ModuleList(convs) | |
self.bns = nn.ModuleList(bns) | |
self.pool = nn.AvgPool2d(kernel_size=3, stride=stride, padding=1) if self.is_first else None | |
self.conv3 = nn.Conv2d(mid_planes * scale, outplanes, kernel_size=1, bias=False) | |
self.bn3 = nn.BatchNorm2d(outplanes) | |
self.relu = nn.ReLU(inplace=True) | |
def forward(self, x, shortcut: Optional[torch.Tensor] = None, children: Optional[List[torch.Tensor]] = None): | |
if shortcut is None: | |
shortcut = x | |
out = self.conv1(x) | |
out = self.bn1(out) | |
out = self.relu(out) | |
spx = torch.split(out, self.width, 1) | |
spo = [] | |
sp = spx[0] # redundant, for torchscript | |
for i, (conv, bn) in enumerate(zip(self.convs, self.bns)): | |
if i == 0 or self.is_first: | |
sp = spx[i] | |
else: | |
sp = sp + spx[i] | |
sp = conv(sp) | |
sp = bn(sp) | |
sp = self.relu(sp) | |
spo.append(sp) | |
if self.scale > 1: | |
if self.pool is not None: # self.is_first == True, None check for torchscript | |
spo.append(self.pool(spx[-1])) | |
else: | |
spo.append(spx[-1]) | |
out = torch.cat(spo, 1) | |
out = self.conv3(out) | |
out = self.bn3(out) | |
out += shortcut | |
out = self.relu(out) | |
return out | |
class DlaRoot(nn.Module): | |
def __init__(self, in_channels, out_channels, kernel_size, shortcut): | |
super(DlaRoot, self).__init__() | |
self.conv = nn.Conv2d( | |
in_channels, out_channels, 1, stride=1, bias=False, padding=(kernel_size - 1) // 2) | |
self.bn = nn.BatchNorm2d(out_channels) | |
self.relu = nn.ReLU(inplace=True) | |
self.shortcut = shortcut | |
def forward(self, x_children: List[torch.Tensor]): | |
x = self.conv(torch.cat(x_children, 1)) | |
x = self.bn(x) | |
if self.shortcut: | |
x += x_children[0] | |
x = self.relu(x) | |
return x | |
class DlaTree(nn.Module): | |
def __init__( | |
self, levels, block, in_channels, out_channels, stride=1, dilation=1, cardinality=1, | |
base_width=64, level_root=False, root_dim=0, root_kernel_size=1, root_shortcut=False): | |
super(DlaTree, self).__init__() | |
if root_dim == 0: | |
root_dim = 2 * out_channels | |
if level_root: | |
root_dim += in_channels | |
self.downsample = nn.MaxPool2d(stride, stride=stride) if stride > 1 else nn.Identity() | |
self.project = nn.Identity() | |
cargs = dict(dilation=dilation, cardinality=cardinality, base_width=base_width) | |
if levels == 1: | |
self.tree1 = block(in_channels, out_channels, stride, **cargs) | |
self.tree2 = block(out_channels, out_channels, 1, **cargs) | |
if in_channels != out_channels: | |
# NOTE the official impl/weights have project layers in levels > 1 case that are never | |
# used, I've moved the project layer here to avoid wasted params but old checkpoints will | |
# need strict=False while loading. | |
self.project = nn.Sequential( | |
nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, bias=False), | |
nn.BatchNorm2d(out_channels)) | |
self.root = DlaRoot(root_dim, out_channels, root_kernel_size, root_shortcut) | |
else: | |
cargs.update(dict(root_kernel_size=root_kernel_size, root_shortcut=root_shortcut)) | |
self.tree1 = DlaTree( | |
levels - 1, block, in_channels, out_channels, stride, root_dim=0, **cargs) | |
self.tree2 = DlaTree( | |
levels - 1, block, out_channels, out_channels, root_dim=root_dim + out_channels, **cargs) | |
self.root = None | |
self.level_root = level_root | |
self.root_dim = root_dim | |
self.levels = levels | |
def forward(self, x, shortcut: Optional[torch.Tensor] = None, children: Optional[List[torch.Tensor]] = None): | |
if children is None: | |
children = [] | |
bottom = self.downsample(x) | |
shortcut = self.project(bottom) | |
if self.level_root: | |
children.append(bottom) | |
x1 = self.tree1(x, shortcut) | |
if self.root is not None: # levels == 1 | |
x2 = self.tree2(x1) | |
x = self.root([x2, x1] + children) | |
else: | |
children.append(x1) | |
x = self.tree2(x1, None, children) | |
return x | |
class DLA(nn.Module): | |
def __init__( | |
self, levels, channels, output_stride=32, num_classes=1000, in_chans=3, global_pool='avg', | |
cardinality=1, base_width=64, block=DlaBottle2neck, shortcut_root=False, drop_rate=0.0): | |
super(DLA, self).__init__() | |
self.channels = channels | |
self.num_classes = num_classes | |
self.cardinality = cardinality | |
self.base_width = base_width | |
self.drop_rate = drop_rate | |
assert output_stride == 32 # FIXME support dilation | |
self.base_layer = nn.Sequential( | |
nn.Conv2d(in_chans, channels[0], kernel_size=7, stride=1, padding=3, bias=False), | |
nn.BatchNorm2d(channels[0]), | |
nn.ReLU(inplace=True)) | |
self.level0 = self._make_conv_level(channels[0], channels[0], levels[0]) | |
self.level1 = self._make_conv_level(channels[0], channels[1], levels[1], stride=2) | |
cargs = dict(cardinality=cardinality, base_width=base_width, root_shortcut=shortcut_root) | |
self.level2 = DlaTree(levels[2], block, channels[1], channels[2], 2, level_root=False, **cargs) | |
self.level3 = DlaTree(levels[3], block, channels[2], channels[3], 2, level_root=True, **cargs) | |
self.level4 = DlaTree(levels[4], block, channels[3], channels[4], 2, level_root=True, **cargs) | |
self.level5 = DlaTree(levels[5], block, channels[4], channels[5], 2, level_root=True, **cargs) | |
self.feature_info = [ | |
dict(num_chs=channels[0], reduction=1, module='level0'), # rare to have a meaningful stride 1 level | |
dict(num_chs=channels[1], reduction=2, module='level1'), | |
dict(num_chs=channels[2], reduction=4, module='level2'), | |
dict(num_chs=channels[3], reduction=8, module='level3'), | |
dict(num_chs=channels[4], reduction=16, module='level4'), | |
dict(num_chs=channels[5], reduction=32, module='level5'), | |
] | |
self.num_features = channels[-1] | |
self.global_pool, self.fc = create_classifier( | |
self.num_features, self.num_classes, pool_type=global_pool, use_conv=True) | |
self.flatten = nn.Flatten(1) if global_pool else nn.Identity() | |
for m in self.modules(): | |
if isinstance(m, nn.Conv2d): | |
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels | |
m.weight.data.normal_(0, math.sqrt(2. / n)) | |
elif isinstance(m, nn.BatchNorm2d): | |
m.weight.data.fill_(1) | |
m.bias.data.zero_() | |
def _make_conv_level(self, inplanes, planes, convs, stride=1, dilation=1): | |
modules = [] | |
for i in range(convs): | |
modules.extend([ | |
nn.Conv2d( | |
inplanes, planes, kernel_size=3, stride=stride if i == 0 else 1, | |
padding=dilation, bias=False, dilation=dilation), | |
nn.BatchNorm2d(planes), | |
nn.ReLU(inplace=True)]) | |
inplanes = planes | |
return nn.Sequential(*modules) | |
def group_matcher(self, coarse=False): | |
matcher = dict( | |
stem=r'^base_layer', | |
blocks=r'^level(\d+)' if coarse else [ | |
# an unusual arch, this achieves somewhat more granularity without getting super messy | |
(r'^level(\d+)\.tree(\d+)', None), | |
(r'^level(\d+)\.root', (2,)), | |
(r'^level(\d+)', (1,)) | |
] | |
) | |
return matcher | |
def set_grad_checkpointing(self, enable=True): | |
assert not enable, 'gradient checkpointing not supported' | |
def get_classifier(self): | |
return self.fc | |
def reset_classifier(self, num_classes, global_pool='avg'): | |
self.num_classes = num_classes | |
self.global_pool, self.fc = create_classifier( | |
self.num_features, self.num_classes, pool_type=global_pool, use_conv=True) | |
self.flatten = nn.Flatten(1) if global_pool else nn.Identity() | |
def forward_features(self, x): | |
x = self.base_layer(x) | |
x = self.level0(x) | |
x = self.level1(x) | |
x = self.level2(x) | |
x = self.level3(x) | |
x = self.level4(x) | |
x = self.level5(x) | |
return x | |
def forward_head(self, x, pre_logits: bool = False): | |
x = self.global_pool(x) | |
if self.drop_rate > 0.: | |
x = F.dropout(x, p=self.drop_rate, training=self.training) | |
if pre_logits: | |
return x.flatten(1) | |
else: | |
x = self.fc(x) | |
return self.flatten(x) | |
def forward(self, x): | |
x = self.forward_features(x) | |
x = self.forward_head(x) | |
return x | |
def _create_dla(variant, pretrained=False, **kwargs): | |
return build_model_with_cfg( | |
DLA, variant, pretrained, | |
pretrained_strict=False, | |
feature_cfg=dict(out_indices=(1, 2, 3, 4, 5)), | |
**kwargs) | |
def dla60_res2net(pretrained=False, **kwargs): | |
model_kwargs = dict( | |
levels=(1, 1, 1, 2, 3, 1), channels=(16, 32, 128, 256, 512, 1024), | |
block=DlaBottle2neck, cardinality=1, base_width=28, **kwargs) | |
return _create_dla('dla60_res2net', pretrained, **model_kwargs) | |
def dla60_res2next(pretrained=False,**kwargs): | |
model_kwargs = dict( | |
levels=(1, 1, 1, 2, 3, 1), channels=(16, 32, 128, 256, 512, 1024), | |
block=DlaBottle2neck, cardinality=8, base_width=4, **kwargs) | |
return _create_dla('dla60_res2next', pretrained, **model_kwargs) | |
def dla34(pretrained=False, **kwargs): # DLA-34 | |
model_kwargs = dict( | |
levels=[1, 1, 1, 2, 2, 1], channels=[16, 32, 64, 128, 256, 512], | |
block=DlaBasic, **kwargs) | |
return _create_dla('dla34', pretrained, **model_kwargs) | |
def dla46_c(pretrained=False, **kwargs): # DLA-46-C | |
model_kwargs = dict( | |
levels=[1, 1, 1, 2, 2, 1], channels=[16, 32, 64, 64, 128, 256], | |
block=DlaBottleneck, **kwargs) | |
return _create_dla('dla46_c', pretrained, **model_kwargs) | |
def dla46x_c(pretrained=False, **kwargs): # DLA-X-46-C | |
model_kwargs = dict( | |
levels=[1, 1, 1, 2, 2, 1], channels=[16, 32, 64, 64, 128, 256], | |
block=DlaBottleneck, cardinality=32, base_width=4, **kwargs) | |
return _create_dla('dla46x_c', pretrained, **model_kwargs) | |
def dla60x_c(pretrained=False, **kwargs): # DLA-X-60-C | |
model_kwargs = dict( | |
levels=[1, 1, 1, 2, 3, 1], channels=[16, 32, 64, 64, 128, 256], | |
block=DlaBottleneck, cardinality=32, base_width=4, **kwargs) | |
return _create_dla('dla60x_c', pretrained, **model_kwargs) | |
def dla60(pretrained=False, **kwargs): # DLA-60 | |
model_kwargs = dict( | |
levels=[1, 1, 1, 2, 3, 1], channels=[16, 32, 128, 256, 512, 1024], | |
block=DlaBottleneck, **kwargs) | |
return _create_dla('dla60', pretrained, **model_kwargs) | |
def dla60x(pretrained=False, **kwargs): # DLA-X-60 | |
model_kwargs = dict( | |
levels=[1, 1, 1, 2, 3, 1], channels=[16, 32, 128, 256, 512, 1024], | |
block=DlaBottleneck, cardinality=32, base_width=4, **kwargs) | |
return _create_dla('dla60x', pretrained, **model_kwargs) | |
def dla102(pretrained=False, **kwargs): # DLA-102 | |
model_kwargs = dict( | |
levels=[1, 1, 1, 3, 4, 1], channels=[16, 32, 128, 256, 512, 1024], | |
block=DlaBottleneck, shortcut_root=True, **kwargs) | |
return _create_dla('dla102', pretrained, **model_kwargs) | |
def dla102x(pretrained=False, **kwargs): # DLA-X-102 | |
model_kwargs = dict( | |
levels=[1, 1, 1, 3, 4, 1], channels=[16, 32, 128, 256, 512, 1024], | |
block=DlaBottleneck, cardinality=32, base_width=4, shortcut_root=True, **kwargs) | |
return _create_dla('dla102x', pretrained, **model_kwargs) | |
def dla102x2(pretrained=False, **kwargs): # DLA-X-102 64 | |
model_kwargs = dict( | |
levels=[1, 1, 1, 3, 4, 1], channels=[16, 32, 128, 256, 512, 1024], | |
block=DlaBottleneck, cardinality=64, base_width=4, shortcut_root=True, **kwargs) | |
return _create_dla('dla102x2', pretrained, **model_kwargs) | |
def dla169(pretrained=False, **kwargs): # DLA-169 | |
model_kwargs = dict( | |
levels=[1, 1, 2, 3, 5, 1], channels=[16, 32, 128, 256, 512, 1024], | |
block=DlaBottleneck, shortcut_root=True, **kwargs) | |
return _create_dla('dla169', pretrained, **model_kwargs) | |