Spaces:
Running
Running
""" MobileViT | |
Paper: | |
V1: `MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer` - https://arxiv.org/abs/2110.02178 | |
V2: `Separable Self-attention for Mobile Vision Transformers` - https://arxiv.org/abs/2206.02680 | |
MobileVitBlock and checkpoints adapted from https://github.com/apple/ml-cvnets (original copyright below) | |
License: https://github.com/apple/ml-cvnets/blob/main/LICENSE (Apple open source) | |
Rest of code, ByobNet, and Transformer block hacked together by / Copyright 2022, Ross Wightman | |
""" | |
# | |
# For licensing see accompanying LICENSE file. | |
# Copyright (C) 2020 Apple Inc. All Rights Reserved. | |
# | |
import math | |
from typing import Union, Callable, Dict, Tuple, Optional, Sequence | |
import torch | |
from torch import nn | |
import torch.nn.functional as F | |
from .byobnet import register_block, ByoBlockCfg, ByoModelCfg, ByobNet, LayerFn, num_groups | |
from .fx_features import register_notrace_module | |
from .layers import to_2tuple, make_divisible, LayerNorm2d, GroupNorm1, ConvMlp, DropPath | |
from .vision_transformer import Block as TransformerBlock | |
from .helpers import build_model_with_cfg | |
from .registry import register_model | |
__all__ = [] | |
def _cfg(url='', **kwargs): | |
return { | |
'url': url, 'num_classes': 1000, 'input_size': (3, 256, 256), 'pool_size': (8, 8), | |
'crop_pct': 0.9, 'interpolation': 'bicubic', | |
'mean': (0., 0., 0.), 'std': (1., 1., 1.), | |
'first_conv': 'stem.conv', 'classifier': 'head.fc', | |
'fixed_input_size': False, | |
**kwargs | |
} | |
default_cfgs = { | |
'mobilevit_xxs': _cfg( | |
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-mvit-weights/mobilevit_xxs-ad385b40.pth'), | |
'mobilevit_xs': _cfg( | |
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-mvit-weights/mobilevit_xs-8fbd6366.pth'), | |
'mobilevit_s': _cfg( | |
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-mvit-weights/mobilevit_s-38a5a959.pth'), | |
'semobilevit_s': _cfg(), | |
'mobilevitv2_050': _cfg( | |
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-mvit-weights/mobilevitv2_050-49951ee2.pth', | |
crop_pct=0.888), | |
'mobilevitv2_075': _cfg( | |
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-mvit-weights/mobilevitv2_075-b5556ef6.pth', | |
crop_pct=0.888), | |
'mobilevitv2_100': _cfg( | |
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-mvit-weights/mobilevitv2_100-e464ef3b.pth', | |
crop_pct=0.888), | |
'mobilevitv2_125': _cfg( | |
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-mvit-weights/mobilevitv2_125-0ae35027.pth', | |
crop_pct=0.888), | |
'mobilevitv2_150': _cfg( | |
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-mvit-weights/mobilevitv2_150-737c5019.pth', | |
crop_pct=0.888), | |
'mobilevitv2_175': _cfg( | |
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-mvit-weights/mobilevitv2_175-16462ee2.pth', | |
crop_pct=0.888), | |
'mobilevitv2_200': _cfg( | |
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-mvit-weights/mobilevitv2_200-b3422f67.pth', | |
crop_pct=0.888), | |
'mobilevitv2_150_in22ft1k': _cfg( | |
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-mvit-weights/mobilevitv2_150_in22ft1k-0b555d7b.pth', | |
crop_pct=0.888), | |
'mobilevitv2_175_in22ft1k': _cfg( | |
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-mvit-weights/mobilevitv2_175_in22ft1k-4117fa1f.pth', | |
crop_pct=0.888), | |
'mobilevitv2_200_in22ft1k': _cfg( | |
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-mvit-weights/mobilevitv2_200_in22ft1k-1d7c8927.pth', | |
crop_pct=0.888), | |
'mobilevitv2_150_384_in22ft1k': _cfg( | |
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-mvit-weights/mobilevitv2_150_384_in22ft1k-9e142854.pth', | |
input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0), | |
'mobilevitv2_175_384_in22ft1k': _cfg( | |
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-mvit-weights/mobilevitv2_175_384_in22ft1k-059cbe56.pth', | |
input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0), | |
'mobilevitv2_200_384_in22ft1k': _cfg( | |
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-mvit-weights/mobilevitv2_200_384_in22ft1k-32c87503.pth', | |
input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0), | |
} | |
def _inverted_residual_block(d, c, s, br=4.0): | |
# inverted residual is a bottleneck block with bottle_ratio > 1 applied to in_chs, linear output, gs=1 (depthwise) | |
return ByoBlockCfg( | |
type='bottle', d=d, c=c, s=s, gs=1, br=br, | |
block_kwargs=dict(bottle_in=True, linear_out=True)) | |
def _mobilevit_block(d, c, s, transformer_dim, transformer_depth, patch_size=4, br=4.0): | |
# inverted residual + mobilevit blocks as per MobileViT network | |
return ( | |
_inverted_residual_block(d=d, c=c, s=s, br=br), | |
ByoBlockCfg( | |
type='mobilevit', d=1, c=c, s=1, | |
block_kwargs=dict( | |
transformer_dim=transformer_dim, | |
transformer_depth=transformer_depth, | |
patch_size=patch_size) | |
) | |
) | |
def _mobilevitv2_block(d, c, s, transformer_depth, patch_size=2, br=2.0, transformer_br=0.5): | |
# inverted residual + mobilevit blocks as per MobileViT network | |
return ( | |
_inverted_residual_block(d=d, c=c, s=s, br=br), | |
ByoBlockCfg( | |
type='mobilevit2', d=1, c=c, s=1, br=transformer_br, gs=1, | |
block_kwargs=dict( | |
transformer_depth=transformer_depth, | |
patch_size=patch_size) | |
) | |
) | |
def _mobilevitv2_cfg(multiplier=1.0): | |
chs = (64, 128, 256, 384, 512) | |
if multiplier != 1.0: | |
chs = tuple([int(c * multiplier) for c in chs]) | |
cfg = ByoModelCfg( | |
blocks=( | |
_inverted_residual_block(d=1, c=chs[0], s=1, br=2.0), | |
_inverted_residual_block(d=2, c=chs[1], s=2, br=2.0), | |
_mobilevitv2_block(d=1, c=chs[2], s=2, transformer_depth=2), | |
_mobilevitv2_block(d=1, c=chs[3], s=2, transformer_depth=4), | |
_mobilevitv2_block(d=1, c=chs[4], s=2, transformer_depth=3), | |
), | |
stem_chs=int(32 * multiplier), | |
stem_type='3x3', | |
stem_pool='', | |
downsample='', | |
act_layer='silu', | |
) | |
return cfg | |
model_cfgs = dict( | |
mobilevit_xxs=ByoModelCfg( | |
blocks=( | |
_inverted_residual_block(d=1, c=16, s=1, br=2.0), | |
_inverted_residual_block(d=3, c=24, s=2, br=2.0), | |
_mobilevit_block(d=1, c=48, s=2, transformer_dim=64, transformer_depth=2, patch_size=2, br=2.0), | |
_mobilevit_block(d=1, c=64, s=2, transformer_dim=80, transformer_depth=4, patch_size=2, br=2.0), | |
_mobilevit_block(d=1, c=80, s=2, transformer_dim=96, transformer_depth=3, patch_size=2, br=2.0), | |
), | |
stem_chs=16, | |
stem_type='3x3', | |
stem_pool='', | |
downsample='', | |
act_layer='silu', | |
num_features=320, | |
), | |
mobilevit_xs=ByoModelCfg( | |
blocks=( | |
_inverted_residual_block(d=1, c=32, s=1), | |
_inverted_residual_block(d=3, c=48, s=2), | |
_mobilevit_block(d=1, c=64, s=2, transformer_dim=96, transformer_depth=2, patch_size=2), | |
_mobilevit_block(d=1, c=80, s=2, transformer_dim=120, transformer_depth=4, patch_size=2), | |
_mobilevit_block(d=1, c=96, s=2, transformer_dim=144, transformer_depth=3, patch_size=2), | |
), | |
stem_chs=16, | |
stem_type='3x3', | |
stem_pool='', | |
downsample='', | |
act_layer='silu', | |
num_features=384, | |
), | |
mobilevit_s=ByoModelCfg( | |
blocks=( | |
_inverted_residual_block(d=1, c=32, s=1), | |
_inverted_residual_block(d=3, c=64, s=2), | |
_mobilevit_block(d=1, c=96, s=2, transformer_dim=144, transformer_depth=2, patch_size=2), | |
_mobilevit_block(d=1, c=128, s=2, transformer_dim=192, transformer_depth=4, patch_size=2), | |
_mobilevit_block(d=1, c=160, s=2, transformer_dim=240, transformer_depth=3, patch_size=2), | |
), | |
stem_chs=16, | |
stem_type='3x3', | |
stem_pool='', | |
downsample='', | |
act_layer='silu', | |
num_features=640, | |
), | |
semobilevit_s=ByoModelCfg( | |
blocks=( | |
_inverted_residual_block(d=1, c=32, s=1), | |
_inverted_residual_block(d=3, c=64, s=2), | |
_mobilevit_block(d=1, c=96, s=2, transformer_dim=144, transformer_depth=2, patch_size=2), | |
_mobilevit_block(d=1, c=128, s=2, transformer_dim=192, transformer_depth=4, patch_size=2), | |
_mobilevit_block(d=1, c=160, s=2, transformer_dim=240, transformer_depth=3, patch_size=2), | |
), | |
stem_chs=16, | |
stem_type='3x3', | |
stem_pool='', | |
downsample='', | |
attn_layer='se', | |
attn_kwargs=dict(rd_ratio=1/8), | |
num_features=640, | |
), | |
mobilevitv2_050=_mobilevitv2_cfg(.50), | |
mobilevitv2_075=_mobilevitv2_cfg(.75), | |
mobilevitv2_125=_mobilevitv2_cfg(1.25), | |
mobilevitv2_100=_mobilevitv2_cfg(1.0), | |
mobilevitv2_150=_mobilevitv2_cfg(1.5), | |
mobilevitv2_175=_mobilevitv2_cfg(1.75), | |
mobilevitv2_200=_mobilevitv2_cfg(2.0), | |
) | |
class MobileVitBlock(nn.Module): | |
""" MobileViT block | |
Paper: https://arxiv.org/abs/2110.02178?context=cs.LG | |
""" | |
def __init__( | |
self, | |
in_chs: int, | |
out_chs: Optional[int] = None, | |
kernel_size: int = 3, | |
stride: int = 1, | |
bottle_ratio: float = 1.0, | |
group_size: Optional[int] = None, | |
dilation: Tuple[int, int] = (1, 1), | |
mlp_ratio: float = 2.0, | |
transformer_dim: Optional[int] = None, | |
transformer_depth: int = 2, | |
patch_size: int = 8, | |
num_heads: int = 4, | |
attn_drop: float = 0., | |
drop: int = 0., | |
no_fusion: bool = False, | |
drop_path_rate: float = 0., | |
layers: LayerFn = None, | |
transformer_norm_layer: Callable = nn.LayerNorm, | |
**kwargs, # eat unused args | |
): | |
super(MobileVitBlock, self).__init__() | |
layers = layers or LayerFn() | |
groups = num_groups(group_size, in_chs) | |
out_chs = out_chs or in_chs | |
transformer_dim = transformer_dim or make_divisible(bottle_ratio * in_chs) | |
self.conv_kxk = layers.conv_norm_act( | |
in_chs, in_chs, kernel_size=kernel_size, | |
stride=stride, groups=groups, dilation=dilation[0]) | |
self.conv_1x1 = nn.Conv2d(in_chs, transformer_dim, kernel_size=1, bias=False) | |
self.transformer = nn.Sequential(*[ | |
TransformerBlock( | |
transformer_dim, mlp_ratio=mlp_ratio, num_heads=num_heads, qkv_bias=True, | |
attn_drop=attn_drop, drop=drop, drop_path=drop_path_rate, | |
act_layer=layers.act, norm_layer=transformer_norm_layer) | |
for _ in range(transformer_depth) | |
]) | |
self.norm = transformer_norm_layer(transformer_dim) | |
self.conv_proj = layers.conv_norm_act(transformer_dim, out_chs, kernel_size=1, stride=1) | |
if no_fusion: | |
self.conv_fusion = None | |
else: | |
self.conv_fusion = layers.conv_norm_act(in_chs + out_chs, out_chs, kernel_size=kernel_size, stride=1) | |
self.patch_size = to_2tuple(patch_size) | |
self.patch_area = self.patch_size[0] * self.patch_size[1] | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
shortcut = x | |
# Local representation | |
x = self.conv_kxk(x) | |
x = self.conv_1x1(x) | |
# Unfold (feature map -> patches) | |
patch_h, patch_w = self.patch_size | |
B, C, H, W = x.shape | |
new_h, new_w = math.ceil(H / patch_h) * patch_h, math.ceil(W / patch_w) * patch_w | |
num_patch_h, num_patch_w = new_h // patch_h, new_w // patch_w # n_h, n_w | |
num_patches = num_patch_h * num_patch_w # N | |
interpolate = False | |
if new_h != H or new_w != W: | |
# Note: Padding can be done, but then it needs to be handled in attention function. | |
x = F.interpolate(x, size=(new_h, new_w), mode="bilinear", align_corners=False) | |
interpolate = True | |
# [B, C, H, W] --> [B * C * n_h, n_w, p_h, p_w] | |
x = x.reshape(B * C * num_patch_h, patch_h, num_patch_w, patch_w).transpose(1, 2) | |
# [B * C * n_h, n_w, p_h, p_w] --> [BP, N, C] where P = p_h * p_w and N = n_h * n_w | |
x = x.reshape(B, C, num_patches, self.patch_area).transpose(1, 3).reshape(B * self.patch_area, num_patches, -1) | |
# Global representations | |
x = self.transformer(x) | |
x = self.norm(x) | |
# Fold (patch -> feature map) | |
# [B, P, N, C] --> [B*C*n_h, n_w, p_h, p_w] | |
x = x.contiguous().view(B, self.patch_area, num_patches, -1) | |
x = x.transpose(1, 3).reshape(B * C * num_patch_h, num_patch_w, patch_h, patch_w) | |
# [B*C*n_h, n_w, p_h, p_w] --> [B*C*n_h, p_h, n_w, p_w] --> [B, C, H, W] | |
x = x.transpose(1, 2).reshape(B, C, num_patch_h * patch_h, num_patch_w * patch_w) | |
if interpolate: | |
x = F.interpolate(x, size=(H, W), mode="bilinear", align_corners=False) | |
x = self.conv_proj(x) | |
if self.conv_fusion is not None: | |
x = self.conv_fusion(torch.cat((shortcut, x), dim=1)) | |
return x | |
class LinearSelfAttention(nn.Module): | |
""" | |
This layer applies a self-attention with linear complexity, as described in `https://arxiv.org/abs/2206.02680` | |
This layer can be used for self- as well as cross-attention. | |
Args: | |
embed_dim (int): :math:`C` from an expected input of size :math:`(N, C, H, W)` | |
attn_drop (float): Dropout value for context scores. Default: 0.0 | |
bias (bool): Use bias in learnable layers. Default: True | |
Shape: | |
- Input: :math:`(N, C, P, N)` where :math:`N` is the batch size, :math:`C` is the input channels, | |
:math:`P` is the number of pixels in the patch, and :math:`N` is the number of patches | |
- Output: same as the input | |
.. note:: | |
For MobileViTv2, we unfold the feature map [B, C, H, W] into [B, C, P, N] where P is the number of pixels | |
in a patch and N is the number of patches. Because channel is the first dimension in this unfolded tensor, | |
we use point-wise convolution (instead of a linear layer). This avoids a transpose operation (which may be | |
expensive on resource-constrained devices) that may be required to convert the unfolded tensor from | |
channel-first to channel-last format in case of a linear layer. | |
""" | |
def __init__( | |
self, | |
embed_dim: int, | |
attn_drop: float = 0.0, | |
proj_drop: float = 0.0, | |
bias: bool = True, | |
) -> None: | |
super().__init__() | |
self.embed_dim = embed_dim | |
self.qkv_proj = nn.Conv2d( | |
in_channels=embed_dim, | |
out_channels=1 + (2 * embed_dim), | |
bias=bias, | |
kernel_size=1, | |
) | |
self.attn_drop = nn.Dropout(attn_drop) | |
self.out_proj = nn.Conv2d( | |
in_channels=embed_dim, | |
out_channels=embed_dim, | |
bias=bias, | |
kernel_size=1, | |
) | |
self.out_drop = nn.Dropout(proj_drop) | |
def _forward_self_attn(self, x: torch.Tensor) -> torch.Tensor: | |
# [B, C, P, N] --> [B, h + 2d, P, N] | |
qkv = self.qkv_proj(x) | |
# Project x into query, key and value | |
# Query --> [B, 1, P, N] | |
# value, key --> [B, d, P, N] | |
query, key, value = qkv.split([1, self.embed_dim, self.embed_dim], dim=1) | |
# apply softmax along N dimension | |
context_scores = F.softmax(query, dim=-1) | |
context_scores = self.attn_drop(context_scores) | |
# Compute context vector | |
# [B, d, P, N] x [B, 1, P, N] -> [B, d, P, N] --> [B, d, P, 1] | |
context_vector = (key * context_scores).sum(dim=-1, keepdim=True) | |
# combine context vector with values | |
# [B, d, P, N] * [B, d, P, 1] --> [B, d, P, N] | |
out = F.relu(value) * context_vector.expand_as(value) | |
out = self.out_proj(out) | |
out = self.out_drop(out) | |
return out | |
def _forward_cross_attn(self, x: torch.Tensor, x_prev: Optional[torch.Tensor] = None) -> torch.Tensor: | |
# x --> [B, C, P, N] | |
# x_prev = [B, C, P, M] | |
batch_size, in_dim, kv_patch_area, kv_num_patches = x.shape | |
q_patch_area, q_num_patches = x.shape[-2:] | |
assert ( | |
kv_patch_area == q_patch_area | |
), "The number of pixels in a patch for query and key_value should be the same" | |
# compute query, key, and value | |
# [B, C, P, M] --> [B, 1 + d, P, M] | |
qk = F.conv2d( | |
x_prev, | |
weight=self.qkv_proj.weight[:self.embed_dim + 1], | |
bias=self.qkv_proj.bias[:self.embed_dim + 1], | |
) | |
# [B, 1 + d, P, M] --> [B, 1, P, M], [B, d, P, M] | |
query, key = qk.split([1, self.embed_dim], dim=1) | |
# [B, C, P, N] --> [B, d, P, N] | |
value = F.conv2d( | |
x, | |
weight=self.qkv_proj.weight[self.embed_dim + 1], | |
bias=self.qkv_proj.bias[self.embed_dim + 1] if self.qkv_proj.bias is not None else None, | |
) | |
# apply softmax along M dimension | |
context_scores = F.softmax(query, dim=-1) | |
context_scores = self.attn_drop(context_scores) | |
# compute context vector | |
# [B, d, P, M] * [B, 1, P, M] -> [B, d, P, M] --> [B, d, P, 1] | |
context_vector = (key * context_scores).sum(dim=-1, keepdim=True) | |
# combine context vector with values | |
# [B, d, P, N] * [B, d, P, 1] --> [B, d, P, N] | |
out = F.relu(value) * context_vector.expand_as(value) | |
out = self.out_proj(out) | |
out = self.out_drop(out) | |
return out | |
def forward(self, x: torch.Tensor, x_prev: Optional[torch.Tensor] = None) -> torch.Tensor: | |
if x_prev is None: | |
return self._forward_self_attn(x) | |
else: | |
return self._forward_cross_attn(x, x_prev=x_prev) | |
class LinearTransformerBlock(nn.Module): | |
""" | |
This class defines the pre-norm transformer encoder with linear self-attention in `MobileViTv2 paper <>`_ | |
Args: | |
embed_dim (int): :math:`C_{in}` from an expected input of size :math:`(B, C_{in}, P, N)` | |
mlp_ratio (float): Inner dimension ratio of the FFN relative to embed_dim | |
drop (float): Dropout rate. Default: 0.0 | |
attn_drop (float): Dropout rate for attention in multi-head attention. Default: 0.0 | |
drop_path (float): Stochastic depth rate Default: 0.0 | |
norm_layer (Callable): Normalization layer. Default: layer_norm_2d | |
Shape: | |
- Input: :math:`(B, C_{in}, P, N)` where :math:`B` is batch size, :math:`C_{in}` is input embedding dim, | |
:math:`P` is number of pixels in a patch, and :math:`N` is number of patches, | |
- Output: same shape as the input | |
""" | |
def __init__( | |
self, | |
embed_dim: int, | |
mlp_ratio: float = 2.0, | |
drop: float = 0.0, | |
attn_drop: float = 0.0, | |
drop_path: float = 0.0, | |
act_layer=None, | |
norm_layer=None, | |
) -> None: | |
super().__init__() | |
act_layer = act_layer or nn.SiLU | |
norm_layer = norm_layer or GroupNorm1 | |
self.norm1 = norm_layer(embed_dim) | |
self.attn = LinearSelfAttention(embed_dim=embed_dim, attn_drop=attn_drop, proj_drop=drop) | |
self.drop_path1 = DropPath(drop_path) | |
self.norm2 = norm_layer(embed_dim) | |
self.mlp = ConvMlp( | |
in_features=embed_dim, | |
hidden_features=int(embed_dim * mlp_ratio), | |
act_layer=act_layer, | |
drop=drop) | |
self.drop_path2 = DropPath(drop_path) | |
def forward(self, x: torch.Tensor, x_prev: Optional[torch.Tensor] = None) -> torch.Tensor: | |
if x_prev is None: | |
# self-attention | |
x = x + self.drop_path1(self.attn(self.norm1(x))) | |
else: | |
# cross-attention | |
res = x | |
x = self.norm1(x) # norm | |
x = self.attn(x, x_prev) # attn | |
x = self.drop_path1(x) + res # residual | |
# Feed forward network | |
x = x + self.drop_path2(self.mlp(self.norm2(x))) | |
return x | |
class MobileVitV2Block(nn.Module): | |
""" | |
This class defines the `MobileViTv2 block <>`_ | |
""" | |
def __init__( | |
self, | |
in_chs: int, | |
out_chs: Optional[int] = None, | |
kernel_size: int = 3, | |
bottle_ratio: float = 1.0, | |
group_size: Optional[int] = 1, | |
dilation: Tuple[int, int] = (1, 1), | |
mlp_ratio: float = 2.0, | |
transformer_dim: Optional[int] = None, | |
transformer_depth: int = 2, | |
patch_size: int = 8, | |
attn_drop: float = 0., | |
drop: int = 0., | |
drop_path_rate: float = 0., | |
layers: LayerFn = None, | |
transformer_norm_layer: Callable = GroupNorm1, | |
**kwargs, # eat unused args | |
): | |
super(MobileVitV2Block, self).__init__() | |
layers = layers or LayerFn() | |
groups = num_groups(group_size, in_chs) | |
out_chs = out_chs or in_chs | |
transformer_dim = transformer_dim or make_divisible(bottle_ratio * in_chs) | |
self.conv_kxk = layers.conv_norm_act( | |
in_chs, in_chs, kernel_size=kernel_size, | |
stride=1, groups=groups, dilation=dilation[0]) | |
self.conv_1x1 = nn.Conv2d(in_chs, transformer_dim, kernel_size=1, bias=False) | |
self.transformer = nn.Sequential(*[ | |
LinearTransformerBlock( | |
transformer_dim, | |
mlp_ratio=mlp_ratio, | |
attn_drop=attn_drop, | |
drop=drop, | |
drop_path=drop_path_rate, | |
act_layer=layers.act, | |
norm_layer=transformer_norm_layer | |
) | |
for _ in range(transformer_depth) | |
]) | |
self.norm = transformer_norm_layer(transformer_dim) | |
self.conv_proj = layers.conv_norm_act(transformer_dim, out_chs, kernel_size=1, stride=1, apply_act=False) | |
self.patch_size = to_2tuple(patch_size) | |
self.patch_area = self.patch_size[0] * self.patch_size[1] | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
B, C, H, W = x.shape | |
patch_h, patch_w = self.patch_size | |
new_h, new_w = math.ceil(H / patch_h) * patch_h, math.ceil(W / patch_w) * patch_w | |
num_patch_h, num_patch_w = new_h // patch_h, new_w // patch_w # n_h, n_w | |
num_patches = num_patch_h * num_patch_w # N | |
if new_h != H or new_w != W: | |
x = F.interpolate(x, size=(new_h, new_w), mode="bilinear", align_corners=True) | |
# Local representation | |
x = self.conv_kxk(x) | |
x = self.conv_1x1(x) | |
# Unfold (feature map -> patches), [B, C, H, W] -> [B, C, P, N] | |
C = x.shape[1] | |
x = x.reshape(B, C, num_patch_h, patch_h, num_patch_w, patch_w).permute(0, 1, 3, 5, 2, 4) | |
x = x.reshape(B, C, -1, num_patches) | |
# Global representations | |
x = self.transformer(x) | |
x = self.norm(x) | |
# Fold (patches -> feature map), [B, C, P, N] --> [B, C, H, W] | |
x = x.reshape(B, C, patch_h, patch_w, num_patch_h, num_patch_w).permute(0, 1, 4, 2, 5, 3) | |
x = x.reshape(B, C, num_patch_h * patch_h, num_patch_w * patch_w) | |
x = self.conv_proj(x) | |
return x | |
register_block('mobilevit', MobileVitBlock) | |
register_block('mobilevit2', MobileVitV2Block) | |
def _create_mobilevit(variant, cfg_variant=None, pretrained=False, **kwargs): | |
return build_model_with_cfg( | |
ByobNet, variant, pretrained, | |
model_cfg=model_cfgs[variant] if not cfg_variant else model_cfgs[cfg_variant], | |
feature_cfg=dict(flatten_sequential=True), | |
**kwargs) | |
def _create_mobilevit2(variant, cfg_variant=None, pretrained=False, **kwargs): | |
return build_model_with_cfg( | |
ByobNet, variant, pretrained, | |
model_cfg=model_cfgs[variant] if not cfg_variant else model_cfgs[cfg_variant], | |
feature_cfg=dict(flatten_sequential=True), | |
**kwargs) | |
def mobilevit_xxs(pretrained=False, **kwargs): | |
return _create_mobilevit('mobilevit_xxs', pretrained=pretrained, **kwargs) | |
def mobilevit_xs(pretrained=False, **kwargs): | |
return _create_mobilevit('mobilevit_xs', pretrained=pretrained, **kwargs) | |
def mobilevit_s(pretrained=False, **kwargs): | |
return _create_mobilevit('mobilevit_s', pretrained=pretrained, **kwargs) | |
def semobilevit_s(pretrained=False, **kwargs): | |
return _create_mobilevit('semobilevit_s', pretrained=pretrained, **kwargs) | |
def mobilevitv2_050(pretrained=False, **kwargs): | |
return _create_mobilevit('mobilevitv2_050', pretrained=pretrained, **kwargs) | |
def mobilevitv2_075(pretrained=False, **kwargs): | |
return _create_mobilevit('mobilevitv2_075', pretrained=pretrained, **kwargs) | |
def mobilevitv2_100(pretrained=False, **kwargs): | |
return _create_mobilevit('mobilevitv2_100', pretrained=pretrained, **kwargs) | |
def mobilevitv2_125(pretrained=False, **kwargs): | |
return _create_mobilevit('mobilevitv2_125', pretrained=pretrained, **kwargs) | |
def mobilevitv2_150(pretrained=False, **kwargs): | |
return _create_mobilevit('mobilevitv2_150', pretrained=pretrained, **kwargs) | |
def mobilevitv2_175(pretrained=False, **kwargs): | |
return _create_mobilevit('mobilevitv2_175', pretrained=pretrained, **kwargs) | |
def mobilevitv2_200(pretrained=False, **kwargs): | |
return _create_mobilevit('mobilevitv2_200', pretrained=pretrained, **kwargs) | |
def mobilevitv2_150_in22ft1k(pretrained=False, **kwargs): | |
return _create_mobilevit( | |
'mobilevitv2_150_in22ft1k', cfg_variant='mobilevitv2_150', pretrained=pretrained, **kwargs) | |
def mobilevitv2_175_in22ft1k(pretrained=False, **kwargs): | |
return _create_mobilevit( | |
'mobilevitv2_175_in22ft1k', cfg_variant='mobilevitv2_175', pretrained=pretrained, **kwargs) | |
def mobilevitv2_200_in22ft1k(pretrained=False, **kwargs): | |
return _create_mobilevit( | |
'mobilevitv2_200_in22ft1k', cfg_variant='mobilevitv2_200', pretrained=pretrained, **kwargs) | |
def mobilevitv2_150_384_in22ft1k(pretrained=False, **kwargs): | |
return _create_mobilevit( | |
'mobilevitv2_150_384_in22ft1k', cfg_variant='mobilevitv2_150', pretrained=pretrained, **kwargs) | |
def mobilevitv2_175_384_in22ft1k(pretrained=False, **kwargs): | |
return _create_mobilevit( | |
'mobilevitv2_175_384_in22ft1k', cfg_variant='mobilevitv2_175', pretrained=pretrained, **kwargs) | |
def mobilevitv2_200_384_in22ft1k(pretrained=False, **kwargs): | |
return _create_mobilevit( | |
'mobilevitv2_200_384_in22ft1k', cfg_variant='mobilevitv2_200', pretrained=pretrained, **kwargs) |