Spaces:
Running
Running
""" NasNet-A (Large) | |
nasnetalarge implementation grabbed from Cadene's pretrained models | |
https://github.com/Cadene/pretrained-models.pytorch | |
""" | |
from functools import partial | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from .helpers import build_model_with_cfg | |
from .layers import ConvNormAct, create_conv2d, create_pool2d, create_classifier | |
from .registry import register_model | |
__all__ = ['NASNetALarge'] | |
default_cfgs = { | |
'nasnetalarge': { | |
'url': 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/nasnetalarge-dc4a7b8b.pth', | |
'input_size': (3, 331, 331), | |
'pool_size': (11, 11), | |
'crop_pct': 0.911, | |
'interpolation': 'bicubic', | |
'mean': (0.5, 0.5, 0.5), | |
'std': (0.5, 0.5, 0.5), | |
'num_classes': 1000, | |
'first_conv': 'conv0.conv', | |
'classifier': 'last_linear', | |
'label_offset': 1, # 1001 classes in pretrained weights | |
}, | |
} | |
class ActConvBn(nn.Module): | |
def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=''): | |
super(ActConvBn, self).__init__() | |
self.act = nn.ReLU() | |
self.conv = create_conv2d( | |
in_channels, out_channels, kernel_size=kernel_size, stride=stride, padding=padding) | |
self.bn = nn.BatchNorm2d(out_channels, eps=0.001, momentum=0.1) | |
def forward(self, x): | |
x = self.act(x) | |
x = self.conv(x) | |
x = self.bn(x) | |
return x | |
class SeparableConv2d(nn.Module): | |
def __init__(self, in_channels, out_channels, kernel_size, stride, padding=''): | |
super(SeparableConv2d, self).__init__() | |
self.depthwise_conv2d = create_conv2d( | |
in_channels, in_channels, kernel_size=kernel_size, | |
stride=stride, padding=padding, groups=in_channels) | |
self.pointwise_conv2d = create_conv2d( | |
in_channels, out_channels, kernel_size=1, padding=0) | |
def forward(self, x): | |
x = self.depthwise_conv2d(x) | |
x = self.pointwise_conv2d(x) | |
return x | |
class BranchSeparables(nn.Module): | |
def __init__(self, in_channels, out_channels, kernel_size, stride=1, pad_type='', stem_cell=False): | |
super(BranchSeparables, self).__init__() | |
middle_channels = out_channels if stem_cell else in_channels | |
self.act_1 = nn.ReLU() | |
self.separable_1 = SeparableConv2d( | |
in_channels, middle_channels, kernel_size, stride=stride, padding=pad_type) | |
self.bn_sep_1 = nn.BatchNorm2d(middle_channels, eps=0.001, momentum=0.1) | |
self.act_2 = nn.ReLU(inplace=True) | |
self.separable_2 = SeparableConv2d( | |
middle_channels, out_channels, kernel_size, stride=1, padding=pad_type) | |
self.bn_sep_2 = nn.BatchNorm2d(out_channels, eps=0.001, momentum=0.1) | |
def forward(self, x): | |
x = self.act_1(x) | |
x = self.separable_1(x) | |
x = self.bn_sep_1(x) | |
x = self.act_2(x) | |
x = self.separable_2(x) | |
x = self.bn_sep_2(x) | |
return x | |
class CellStem0(nn.Module): | |
def __init__(self, stem_size, num_channels=42, pad_type=''): | |
super(CellStem0, self).__init__() | |
self.num_channels = num_channels | |
self.stem_size = stem_size | |
self.conv_1x1 = ActConvBn(self.stem_size, self.num_channels, 1, stride=1) | |
self.comb_iter_0_left = BranchSeparables(self.num_channels, self.num_channels, 5, 2, pad_type) | |
self.comb_iter_0_right = BranchSeparables(self.stem_size, self.num_channels, 7, 2, pad_type, stem_cell=True) | |
self.comb_iter_1_left = create_pool2d('max', 3, 2, padding=pad_type) | |
self.comb_iter_1_right = BranchSeparables(self.stem_size, self.num_channels, 7, 2, pad_type, stem_cell=True) | |
self.comb_iter_2_left = create_pool2d('avg', 3, 2, count_include_pad=False, padding=pad_type) | |
self.comb_iter_2_right = BranchSeparables(self.stem_size, self.num_channels, 5, 2, pad_type, stem_cell=True) | |
self.comb_iter_3_right = create_pool2d('avg', 3, 1, count_include_pad=False, padding=pad_type) | |
self.comb_iter_4_left = BranchSeparables(self.num_channels, self.num_channels, 3, 1, pad_type) | |
self.comb_iter_4_right = create_pool2d('max', 3, 2, padding=pad_type) | |
def forward(self, x): | |
x1 = self.conv_1x1(x) | |
x_comb_iter_0_left = self.comb_iter_0_left(x1) | |
x_comb_iter_0_right = self.comb_iter_0_right(x) | |
x_comb_iter_0 = x_comb_iter_0_left + x_comb_iter_0_right | |
x_comb_iter_1_left = self.comb_iter_1_left(x1) | |
x_comb_iter_1_right = self.comb_iter_1_right(x) | |
x_comb_iter_1 = x_comb_iter_1_left + x_comb_iter_1_right | |
x_comb_iter_2_left = self.comb_iter_2_left(x1) | |
x_comb_iter_2_right = self.comb_iter_2_right(x) | |
x_comb_iter_2 = x_comb_iter_2_left + x_comb_iter_2_right | |
x_comb_iter_3_right = self.comb_iter_3_right(x_comb_iter_0) | |
x_comb_iter_3 = x_comb_iter_3_right + x_comb_iter_1 | |
x_comb_iter_4_left = self.comb_iter_4_left(x_comb_iter_0) | |
x_comb_iter_4_right = self.comb_iter_4_right(x1) | |
x_comb_iter_4 = x_comb_iter_4_left + x_comb_iter_4_right | |
x_out = torch.cat([x_comb_iter_1, x_comb_iter_2, x_comb_iter_3, x_comb_iter_4], 1) | |
return x_out | |
class CellStem1(nn.Module): | |
def __init__(self, stem_size, num_channels, pad_type=''): | |
super(CellStem1, self).__init__() | |
self.num_channels = num_channels | |
self.stem_size = stem_size | |
self.conv_1x1 = ActConvBn(2 * self.num_channels, self.num_channels, 1, stride=1) | |
self.act = nn.ReLU() | |
self.path_1 = nn.Sequential() | |
self.path_1.add_module('avgpool', nn.AvgPool2d(1, stride=2, count_include_pad=False)) | |
self.path_1.add_module('conv', nn.Conv2d(self.stem_size, self.num_channels // 2, 1, stride=1, bias=False)) | |
self.path_2 = nn.Sequential() | |
self.path_2.add_module('pad', nn.ZeroPad2d((-1, 1, -1, 1))) | |
self.path_2.add_module('avgpool', nn.AvgPool2d(1, stride=2, count_include_pad=False)) | |
self.path_2.add_module('conv', nn.Conv2d(self.stem_size, self.num_channels // 2, 1, stride=1, bias=False)) | |
self.final_path_bn = nn.BatchNorm2d(self.num_channels, eps=0.001, momentum=0.1) | |
self.comb_iter_0_left = BranchSeparables(self.num_channels, self.num_channels, 5, 2, pad_type) | |
self.comb_iter_0_right = BranchSeparables(self.num_channels, self.num_channels, 7, 2, pad_type) | |
self.comb_iter_1_left = create_pool2d('max', 3, 2, padding=pad_type) | |
self.comb_iter_1_right = BranchSeparables(self.num_channels, self.num_channels, 7, 2, pad_type) | |
self.comb_iter_2_left = create_pool2d('avg', 3, 2, count_include_pad=False, padding=pad_type) | |
self.comb_iter_2_right = BranchSeparables(self.num_channels, self.num_channels, 5, 2, pad_type) | |
self.comb_iter_3_right = create_pool2d('avg', 3, 1, count_include_pad=False, padding=pad_type) | |
self.comb_iter_4_left = BranchSeparables(self.num_channels, self.num_channels, 3, 1, pad_type) | |
self.comb_iter_4_right = create_pool2d('max', 3, 2, padding=pad_type) | |
def forward(self, x_conv0, x_stem_0): | |
x_left = self.conv_1x1(x_stem_0) | |
x_relu = self.act(x_conv0) | |
# path 1 | |
x_path1 = self.path_1(x_relu) | |
# path 2 | |
x_path2 = self.path_2(x_relu) | |
# final path | |
x_right = self.final_path_bn(torch.cat([x_path1, x_path2], 1)) | |
x_comb_iter_0_left = self.comb_iter_0_left(x_left) | |
x_comb_iter_0_right = self.comb_iter_0_right(x_right) | |
x_comb_iter_0 = x_comb_iter_0_left + x_comb_iter_0_right | |
x_comb_iter_1_left = self.comb_iter_1_left(x_left) | |
x_comb_iter_1_right = self.comb_iter_1_right(x_right) | |
x_comb_iter_1 = x_comb_iter_1_left + x_comb_iter_1_right | |
x_comb_iter_2_left = self.comb_iter_2_left(x_left) | |
x_comb_iter_2_right = self.comb_iter_2_right(x_right) | |
x_comb_iter_2 = x_comb_iter_2_left + x_comb_iter_2_right | |
x_comb_iter_3_right = self.comb_iter_3_right(x_comb_iter_0) | |
x_comb_iter_3 = x_comb_iter_3_right + x_comb_iter_1 | |
x_comb_iter_4_left = self.comb_iter_4_left(x_comb_iter_0) | |
x_comb_iter_4_right = self.comb_iter_4_right(x_left) | |
x_comb_iter_4 = x_comb_iter_4_left + x_comb_iter_4_right | |
x_out = torch.cat([x_comb_iter_1, x_comb_iter_2, x_comb_iter_3, x_comb_iter_4], 1) | |
return x_out | |
class FirstCell(nn.Module): | |
def __init__(self, in_chs_left, out_chs_left, in_chs_right, out_chs_right, pad_type=''): | |
super(FirstCell, self).__init__() | |
self.conv_1x1 = ActConvBn(in_chs_right, out_chs_right, 1, stride=1) | |
self.act = nn.ReLU() | |
self.path_1 = nn.Sequential() | |
self.path_1.add_module('avgpool', nn.AvgPool2d(1, stride=2, count_include_pad=False)) | |
self.path_1.add_module('conv', nn.Conv2d(in_chs_left, out_chs_left, 1, stride=1, bias=False)) | |
self.path_2 = nn.Sequential() | |
self.path_2.add_module('pad', nn.ZeroPad2d((-1, 1, -1, 1))) | |
self.path_2.add_module('avgpool', nn.AvgPool2d(1, stride=2, count_include_pad=False)) | |
self.path_2.add_module('conv', nn.Conv2d(in_chs_left, out_chs_left, 1, stride=1, bias=False)) | |
self.final_path_bn = nn.BatchNorm2d(out_chs_left * 2, eps=0.001, momentum=0.1) | |
self.comb_iter_0_left = BranchSeparables(out_chs_right, out_chs_right, 5, 1, pad_type) | |
self.comb_iter_0_right = BranchSeparables(out_chs_right, out_chs_right, 3, 1, pad_type) | |
self.comb_iter_1_left = BranchSeparables(out_chs_right, out_chs_right, 5, 1, pad_type) | |
self.comb_iter_1_right = BranchSeparables(out_chs_right, out_chs_right, 3, 1, pad_type) | |
self.comb_iter_2_left = create_pool2d('avg', 3, 1, count_include_pad=False, padding=pad_type) | |
self.comb_iter_3_left = create_pool2d('avg', 3, 1, count_include_pad=False, padding=pad_type) | |
self.comb_iter_3_right = create_pool2d('avg', 3, 1, count_include_pad=False, padding=pad_type) | |
self.comb_iter_4_left = BranchSeparables(out_chs_right, out_chs_right, 3, 1, pad_type) | |
def forward(self, x, x_prev): | |
x_relu = self.act(x_prev) | |
x_path1 = self.path_1(x_relu) | |
x_path2 = self.path_2(x_relu) | |
x_left = self.final_path_bn(torch.cat([x_path1, x_path2], 1)) | |
x_right = self.conv_1x1(x) | |
x_comb_iter_0_left = self.comb_iter_0_left(x_right) | |
x_comb_iter_0_right = self.comb_iter_0_right(x_left) | |
x_comb_iter_0 = x_comb_iter_0_left + x_comb_iter_0_right | |
x_comb_iter_1_left = self.comb_iter_1_left(x_left) | |
x_comb_iter_1_right = self.comb_iter_1_right(x_left) | |
x_comb_iter_1 = x_comb_iter_1_left + x_comb_iter_1_right | |
x_comb_iter_2_left = self.comb_iter_2_left(x_right) | |
x_comb_iter_2 = x_comb_iter_2_left + x_left | |
x_comb_iter_3_left = self.comb_iter_3_left(x_left) | |
x_comb_iter_3_right = self.comb_iter_3_right(x_left) | |
x_comb_iter_3 = x_comb_iter_3_left + x_comb_iter_3_right | |
x_comb_iter_4_left = self.comb_iter_4_left(x_right) | |
x_comb_iter_4 = x_comb_iter_4_left + x_right | |
x_out = torch.cat([x_left, x_comb_iter_0, x_comb_iter_1, x_comb_iter_2, x_comb_iter_3, x_comb_iter_4], 1) | |
return x_out | |
class NormalCell(nn.Module): | |
def __init__(self, in_chs_left, out_chs_left, in_chs_right, out_chs_right, pad_type=''): | |
super(NormalCell, self).__init__() | |
self.conv_prev_1x1 = ActConvBn(in_chs_left, out_chs_left, 1, stride=1, padding=pad_type) | |
self.conv_1x1 = ActConvBn(in_chs_right, out_chs_right, 1, stride=1, padding=pad_type) | |
self.comb_iter_0_left = BranchSeparables(out_chs_right, out_chs_right, 5, 1, pad_type) | |
self.comb_iter_0_right = BranchSeparables(out_chs_left, out_chs_left, 3, 1, pad_type) | |
self.comb_iter_1_left = BranchSeparables(out_chs_left, out_chs_left, 5, 1, pad_type) | |
self.comb_iter_1_right = BranchSeparables(out_chs_left, out_chs_left, 3, 1, pad_type) | |
self.comb_iter_2_left = create_pool2d('avg', 3, 1, count_include_pad=False, padding=pad_type) | |
self.comb_iter_3_left = create_pool2d('avg', 3, 1, count_include_pad=False, padding=pad_type) | |
self.comb_iter_3_right = create_pool2d('avg', 3, 1, count_include_pad=False, padding=pad_type) | |
self.comb_iter_4_left = BranchSeparables(out_chs_right, out_chs_right, 3, 1, pad_type) | |
def forward(self, x, x_prev): | |
x_left = self.conv_prev_1x1(x_prev) | |
x_right = self.conv_1x1(x) | |
x_comb_iter_0_left = self.comb_iter_0_left(x_right) | |
x_comb_iter_0_right = self.comb_iter_0_right(x_left) | |
x_comb_iter_0 = x_comb_iter_0_left + x_comb_iter_0_right | |
x_comb_iter_1_left = self.comb_iter_1_left(x_left) | |
x_comb_iter_1_right = self.comb_iter_1_right(x_left) | |
x_comb_iter_1 = x_comb_iter_1_left + x_comb_iter_1_right | |
x_comb_iter_2_left = self.comb_iter_2_left(x_right) | |
x_comb_iter_2 = x_comb_iter_2_left + x_left | |
x_comb_iter_3_left = self.comb_iter_3_left(x_left) | |
x_comb_iter_3_right = self.comb_iter_3_right(x_left) | |
x_comb_iter_3 = x_comb_iter_3_left + x_comb_iter_3_right | |
x_comb_iter_4_left = self.comb_iter_4_left(x_right) | |
x_comb_iter_4 = x_comb_iter_4_left + x_right | |
x_out = torch.cat([x_left, x_comb_iter_0, x_comb_iter_1, x_comb_iter_2, x_comb_iter_3, x_comb_iter_4], 1) | |
return x_out | |
class ReductionCell0(nn.Module): | |
def __init__(self, in_chs_left, out_chs_left, in_chs_right, out_chs_right, pad_type=''): | |
super(ReductionCell0, self).__init__() | |
self.conv_prev_1x1 = ActConvBn(in_chs_left, out_chs_left, 1, stride=1, padding=pad_type) | |
self.conv_1x1 = ActConvBn(in_chs_right, out_chs_right, 1, stride=1, padding=pad_type) | |
self.comb_iter_0_left = BranchSeparables(out_chs_right, out_chs_right, 5, 2, pad_type) | |
self.comb_iter_0_right = BranchSeparables(out_chs_right, out_chs_right, 7, 2, pad_type) | |
self.comb_iter_1_left = create_pool2d('max', 3, 2, padding=pad_type) | |
self.comb_iter_1_right = BranchSeparables(out_chs_right, out_chs_right, 7, 2, pad_type) | |
self.comb_iter_2_left = create_pool2d('avg', 3, 2, count_include_pad=False, padding=pad_type) | |
self.comb_iter_2_right = BranchSeparables(out_chs_right, out_chs_right, 5, 2, pad_type) | |
self.comb_iter_3_right = create_pool2d('avg', 3, 1, count_include_pad=False, padding=pad_type) | |
self.comb_iter_4_left = BranchSeparables(out_chs_right, out_chs_right, 3, 1, pad_type) | |
self.comb_iter_4_right = create_pool2d('max', 3, 2, padding=pad_type) | |
def forward(self, x, x_prev): | |
x_left = self.conv_prev_1x1(x_prev) | |
x_right = self.conv_1x1(x) | |
x_comb_iter_0_left = self.comb_iter_0_left(x_right) | |
x_comb_iter_0_right = self.comb_iter_0_right(x_left) | |
x_comb_iter_0 = x_comb_iter_0_left + x_comb_iter_0_right | |
x_comb_iter_1_left = self.comb_iter_1_left(x_right) | |
x_comb_iter_1_right = self.comb_iter_1_right(x_left) | |
x_comb_iter_1 = x_comb_iter_1_left + x_comb_iter_1_right | |
x_comb_iter_2_left = self.comb_iter_2_left(x_right) | |
x_comb_iter_2_right = self.comb_iter_2_right(x_left) | |
x_comb_iter_2 = x_comb_iter_2_left + x_comb_iter_2_right | |
x_comb_iter_3_right = self.comb_iter_3_right(x_comb_iter_0) | |
x_comb_iter_3 = x_comb_iter_3_right + x_comb_iter_1 | |
x_comb_iter_4_left = self.comb_iter_4_left(x_comb_iter_0) | |
x_comb_iter_4_right = self.comb_iter_4_right(x_right) | |
x_comb_iter_4 = x_comb_iter_4_left + x_comb_iter_4_right | |
x_out = torch.cat([x_comb_iter_1, x_comb_iter_2, x_comb_iter_3, x_comb_iter_4], 1) | |
return x_out | |
class ReductionCell1(nn.Module): | |
def __init__(self, in_chs_left, out_chs_left, in_chs_right, out_chs_right, pad_type=''): | |
super(ReductionCell1, self).__init__() | |
self.conv_prev_1x1 = ActConvBn(in_chs_left, out_chs_left, 1, stride=1, padding=pad_type) | |
self.conv_1x1 = ActConvBn(in_chs_right, out_chs_right, 1, stride=1, padding=pad_type) | |
self.comb_iter_0_left = BranchSeparables(out_chs_right, out_chs_right, 5, 2, pad_type) | |
self.comb_iter_0_right = BranchSeparables(out_chs_right, out_chs_right, 7, 2, pad_type) | |
self.comb_iter_1_left = create_pool2d('max', 3, 2, padding=pad_type) | |
self.comb_iter_1_right = BranchSeparables(out_chs_right, out_chs_right, 7, 2, pad_type) | |
self.comb_iter_2_left = create_pool2d('avg', 3, 2, count_include_pad=False, padding=pad_type) | |
self.comb_iter_2_right = BranchSeparables(out_chs_right, out_chs_right, 5, 2, pad_type) | |
self.comb_iter_3_right = create_pool2d('avg', 3, 1, count_include_pad=False, padding=pad_type) | |
self.comb_iter_4_left = BranchSeparables(out_chs_right, out_chs_right, 3, 1, pad_type) | |
self.comb_iter_4_right = create_pool2d('max', 3, 2, padding=pad_type) | |
def forward(self, x, x_prev): | |
x_left = self.conv_prev_1x1(x_prev) | |
x_right = self.conv_1x1(x) | |
x_comb_iter_0_left = self.comb_iter_0_left(x_right) | |
x_comb_iter_0_right = self.comb_iter_0_right(x_left) | |
x_comb_iter_0 = x_comb_iter_0_left + x_comb_iter_0_right | |
x_comb_iter_1_left = self.comb_iter_1_left(x_right) | |
x_comb_iter_1_right = self.comb_iter_1_right(x_left) | |
x_comb_iter_1 = x_comb_iter_1_left + x_comb_iter_1_right | |
x_comb_iter_2_left = self.comb_iter_2_left(x_right) | |
x_comb_iter_2_right = self.comb_iter_2_right(x_left) | |
x_comb_iter_2 = x_comb_iter_2_left + x_comb_iter_2_right | |
x_comb_iter_3_right = self.comb_iter_3_right(x_comb_iter_0) | |
x_comb_iter_3 = x_comb_iter_3_right + x_comb_iter_1 | |
x_comb_iter_4_left = self.comb_iter_4_left(x_comb_iter_0) | |
x_comb_iter_4_right = self.comb_iter_4_right(x_right) | |
x_comb_iter_4 = x_comb_iter_4_left + x_comb_iter_4_right | |
x_out = torch.cat([x_comb_iter_1, x_comb_iter_2, x_comb_iter_3, x_comb_iter_4], 1) | |
return x_out | |
class NASNetALarge(nn.Module): | |
"""NASNetALarge (6 @ 4032) """ | |
def __init__( | |
self, num_classes=1000, in_chans=3, stem_size=96, channel_multiplier=2, | |
num_features=4032, output_stride=32, drop_rate=0., global_pool='avg', pad_type='same'): | |
super(NASNetALarge, self).__init__() | |
self.num_classes = num_classes | |
self.stem_size = stem_size | |
self.num_features = num_features | |
self.channel_multiplier = channel_multiplier | |
self.drop_rate = drop_rate | |
assert output_stride == 32 | |
channels = self.num_features // 24 | |
# 24 is default value for the architecture | |
self.conv0 = ConvNormAct( | |
in_channels=in_chans, out_channels=self.stem_size, kernel_size=3, padding=0, stride=2, | |
norm_layer=partial(nn.BatchNorm2d, eps=0.001, momentum=0.1), apply_act=False) | |
self.cell_stem_0 = CellStem0( | |
self.stem_size, num_channels=channels // (channel_multiplier ** 2), pad_type=pad_type) | |
self.cell_stem_1 = CellStem1( | |
self.stem_size, num_channels=channels // channel_multiplier, pad_type=pad_type) | |
self.cell_0 = FirstCell( | |
in_chs_left=channels, out_chs_left=channels // 2, | |
in_chs_right=2 * channels, out_chs_right=channels, pad_type=pad_type) | |
self.cell_1 = NormalCell( | |
in_chs_left=2 * channels, out_chs_left=channels, | |
in_chs_right=6 * channels, out_chs_right=channels, pad_type=pad_type) | |
self.cell_2 = NormalCell( | |
in_chs_left=6 * channels, out_chs_left=channels, | |
in_chs_right=6 * channels, out_chs_right=channels, pad_type=pad_type) | |
self.cell_3 = NormalCell( | |
in_chs_left=6 * channels, out_chs_left=channels, | |
in_chs_right=6 * channels, out_chs_right=channels, pad_type=pad_type) | |
self.cell_4 = NormalCell( | |
in_chs_left=6 * channels, out_chs_left=channels, | |
in_chs_right=6 * channels, out_chs_right=channels, pad_type=pad_type) | |
self.cell_5 = NormalCell( | |
in_chs_left=6 * channels, out_chs_left=channels, | |
in_chs_right=6 * channels, out_chs_right=channels, pad_type=pad_type) | |
self.reduction_cell_0 = ReductionCell0( | |
in_chs_left=6 * channels, out_chs_left=2 * channels, | |
in_chs_right=6 * channels, out_chs_right=2 * channels, pad_type=pad_type) | |
self.cell_6 = FirstCell( | |
in_chs_left=6 * channels, out_chs_left=channels, | |
in_chs_right=8 * channels, out_chs_right=2 * channels, pad_type=pad_type) | |
self.cell_7 = NormalCell( | |
in_chs_left=8 * channels, out_chs_left=2 * channels, | |
in_chs_right=12 * channels, out_chs_right=2 * channels, pad_type=pad_type) | |
self.cell_8 = NormalCell( | |
in_chs_left=12 * channels, out_chs_left=2 * channels, | |
in_chs_right=12 * channels, out_chs_right=2 * channels, pad_type=pad_type) | |
self.cell_9 = NormalCell( | |
in_chs_left=12 * channels, out_chs_left=2 * channels, | |
in_chs_right=12 * channels, out_chs_right=2 * channels, pad_type=pad_type) | |
self.cell_10 = NormalCell( | |
in_chs_left=12 * channels, out_chs_left=2 * channels, | |
in_chs_right=12 * channels, out_chs_right=2 * channels, pad_type=pad_type) | |
self.cell_11 = NormalCell( | |
in_chs_left=12 * channels, out_chs_left=2 * channels, | |
in_chs_right=12 * channels, out_chs_right=2 * channels, pad_type=pad_type) | |
self.reduction_cell_1 = ReductionCell1( | |
in_chs_left=12 * channels, out_chs_left=4 * channels, | |
in_chs_right=12 * channels, out_chs_right=4 * channels, pad_type=pad_type) | |
self.cell_12 = FirstCell( | |
in_chs_left=12 * channels, out_chs_left=2 * channels, | |
in_chs_right=16 * channels, out_chs_right=4 * channels, pad_type=pad_type) | |
self.cell_13 = NormalCell( | |
in_chs_left=16 * channels, out_chs_left=4 * channels, | |
in_chs_right=24 * channels, out_chs_right=4 * channels, pad_type=pad_type) | |
self.cell_14 = NormalCell( | |
in_chs_left=24 * channels, out_chs_left=4 * channels, | |
in_chs_right=24 * channels, out_chs_right=4 * channels, pad_type=pad_type) | |
self.cell_15 = NormalCell( | |
in_chs_left=24 * channels, out_chs_left=4 * channels, | |
in_chs_right=24 * channels, out_chs_right=4 * channels, pad_type=pad_type) | |
self.cell_16 = NormalCell( | |
in_chs_left=24 * channels, out_chs_left=4 * channels, | |
in_chs_right=24 * channels, out_chs_right=4 * channels, pad_type=pad_type) | |
self.cell_17 = NormalCell( | |
in_chs_left=24 * channels, out_chs_left=4 * channels, | |
in_chs_right=24 * channels, out_chs_right=4 * channels, pad_type=pad_type) | |
self.act = nn.ReLU(inplace=True) | |
self.feature_info = [ | |
dict(num_chs=96, reduction=2, module='conv0'), | |
dict(num_chs=168, reduction=4, module='cell_stem_1.conv_1x1.act'), | |
dict(num_chs=1008, reduction=8, module='reduction_cell_0.conv_1x1.act'), | |
dict(num_chs=2016, reduction=16, module='reduction_cell_1.conv_1x1.act'), | |
dict(num_chs=4032, reduction=32, module='act'), | |
] | |
self.global_pool, self.last_linear = create_classifier( | |
self.num_features, self.num_classes, pool_type=global_pool) | |
def group_matcher(self, coarse=False): | |
matcher = dict( | |
stem=r'^conv0|cell_stem_[01]', | |
blocks=[ | |
(r'^cell_(\d+)', None), | |
(r'^reduction_cell_0', (6,)), | |
(r'^reduction_cell_1', (12,)), | |
] | |
) | |
return matcher | |
def set_grad_checkpointing(self, enable=True): | |
assert not enable, 'gradient checkpointing not supported' | |
def get_classifier(self): | |
return self.last_linear | |
def reset_classifier(self, num_classes, global_pool='avg'): | |
self.num_classes = num_classes | |
self.global_pool, self.last_linear = create_classifier( | |
self.num_features, self.num_classes, pool_type=global_pool) | |
def forward_features(self, x): | |
x_conv0 = self.conv0(x) | |
x_stem_0 = self.cell_stem_0(x_conv0) | |
x_stem_1 = self.cell_stem_1(x_conv0, x_stem_0) | |
x_cell_0 = self.cell_0(x_stem_1, x_stem_0) | |
x_cell_1 = self.cell_1(x_cell_0, x_stem_1) | |
x_cell_2 = self.cell_2(x_cell_1, x_cell_0) | |
x_cell_3 = self.cell_3(x_cell_2, x_cell_1) | |
x_cell_4 = self.cell_4(x_cell_3, x_cell_2) | |
x_cell_5 = self.cell_5(x_cell_4, x_cell_3) | |
x_reduction_cell_0 = self.reduction_cell_0(x_cell_5, x_cell_4) | |
x_cell_6 = self.cell_6(x_reduction_cell_0, x_cell_4) | |
x_cell_7 = self.cell_7(x_cell_6, x_reduction_cell_0) | |
x_cell_8 = self.cell_8(x_cell_7, x_cell_6) | |
x_cell_9 = self.cell_9(x_cell_8, x_cell_7) | |
x_cell_10 = self.cell_10(x_cell_9, x_cell_8) | |
x_cell_11 = self.cell_11(x_cell_10, x_cell_9) | |
x_reduction_cell_1 = self.reduction_cell_1(x_cell_11, x_cell_10) | |
x_cell_12 = self.cell_12(x_reduction_cell_1, x_cell_10) | |
x_cell_13 = self.cell_13(x_cell_12, x_reduction_cell_1) | |
x_cell_14 = self.cell_14(x_cell_13, x_cell_12) | |
x_cell_15 = self.cell_15(x_cell_14, x_cell_13) | |
x_cell_16 = self.cell_16(x_cell_15, x_cell_14) | |
x_cell_17 = self.cell_17(x_cell_16, x_cell_15) | |
x = self.act(x_cell_17) | |
return x | |
def forward_head(self, x): | |
x = self.global_pool(x) | |
if self.drop_rate > 0: | |
x = F.dropout(x, self.drop_rate, training=self.training) | |
x = self.last_linear(x) | |
return x | |
def forward(self, x): | |
x = self.forward_features(x) | |
x = self.forward_head(x) | |
return x | |
def _create_nasnet(variant, pretrained=False, **kwargs): | |
return build_model_with_cfg( | |
NASNetALarge, variant, pretrained, | |
feature_cfg=dict(feature_cls='hook', no_rewrite=True), # not possible to re-write this model | |
**kwargs) | |
def nasnetalarge(pretrained=False, **kwargs): | |
"""NASNet-A large model architecture. | |
""" | |
model_kwargs = dict(pad_type='same', **kwargs) | |
return _create_nasnet('nasnetalarge', pretrained, **model_kwargs) | |