gartajackhats1985's picture
Upload 1830 files
07f408f verified
raw
history blame
26.5 kB
""" NasNet-A (Large)
nasnetalarge implementation grabbed from Cadene's pretrained models
https://github.com/Cadene/pretrained-models.pytorch
"""
from functools import partial
import torch
import torch.nn as nn
import torch.nn.functional as F
from .helpers import build_model_with_cfg
from .layers import ConvNormAct, create_conv2d, create_pool2d, create_classifier
from .registry import register_model
__all__ = ['NASNetALarge']
default_cfgs = {
'nasnetalarge': {
'url': 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/nasnetalarge-dc4a7b8b.pth',
'input_size': (3, 331, 331),
'pool_size': (11, 11),
'crop_pct': 0.911,
'interpolation': 'bicubic',
'mean': (0.5, 0.5, 0.5),
'std': (0.5, 0.5, 0.5),
'num_classes': 1000,
'first_conv': 'conv0.conv',
'classifier': 'last_linear',
'label_offset': 1, # 1001 classes in pretrained weights
},
}
class ActConvBn(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=''):
super(ActConvBn, self).__init__()
self.act = nn.ReLU()
self.conv = create_conv2d(
in_channels, out_channels, kernel_size=kernel_size, stride=stride, padding=padding)
self.bn = nn.BatchNorm2d(out_channels, eps=0.001, momentum=0.1)
def forward(self, x):
x = self.act(x)
x = self.conv(x)
x = self.bn(x)
return x
class SeparableConv2d(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, stride, padding=''):
super(SeparableConv2d, self).__init__()
self.depthwise_conv2d = create_conv2d(
in_channels, in_channels, kernel_size=kernel_size,
stride=stride, padding=padding, groups=in_channels)
self.pointwise_conv2d = create_conv2d(
in_channels, out_channels, kernel_size=1, padding=0)
def forward(self, x):
x = self.depthwise_conv2d(x)
x = self.pointwise_conv2d(x)
return x
class BranchSeparables(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, stride=1, pad_type='', stem_cell=False):
super(BranchSeparables, self).__init__()
middle_channels = out_channels if stem_cell else in_channels
self.act_1 = nn.ReLU()
self.separable_1 = SeparableConv2d(
in_channels, middle_channels, kernel_size, stride=stride, padding=pad_type)
self.bn_sep_1 = nn.BatchNorm2d(middle_channels, eps=0.001, momentum=0.1)
self.act_2 = nn.ReLU(inplace=True)
self.separable_2 = SeparableConv2d(
middle_channels, out_channels, kernel_size, stride=1, padding=pad_type)
self.bn_sep_2 = nn.BatchNorm2d(out_channels, eps=0.001, momentum=0.1)
def forward(self, x):
x = self.act_1(x)
x = self.separable_1(x)
x = self.bn_sep_1(x)
x = self.act_2(x)
x = self.separable_2(x)
x = self.bn_sep_2(x)
return x
class CellStem0(nn.Module):
def __init__(self, stem_size, num_channels=42, pad_type=''):
super(CellStem0, self).__init__()
self.num_channels = num_channels
self.stem_size = stem_size
self.conv_1x1 = ActConvBn(self.stem_size, self.num_channels, 1, stride=1)
self.comb_iter_0_left = BranchSeparables(self.num_channels, self.num_channels, 5, 2, pad_type)
self.comb_iter_0_right = BranchSeparables(self.stem_size, self.num_channels, 7, 2, pad_type, stem_cell=True)
self.comb_iter_1_left = create_pool2d('max', 3, 2, padding=pad_type)
self.comb_iter_1_right = BranchSeparables(self.stem_size, self.num_channels, 7, 2, pad_type, stem_cell=True)
self.comb_iter_2_left = create_pool2d('avg', 3, 2, count_include_pad=False, padding=pad_type)
self.comb_iter_2_right = BranchSeparables(self.stem_size, self.num_channels, 5, 2, pad_type, stem_cell=True)
self.comb_iter_3_right = create_pool2d('avg', 3, 1, count_include_pad=False, padding=pad_type)
self.comb_iter_4_left = BranchSeparables(self.num_channels, self.num_channels, 3, 1, pad_type)
self.comb_iter_4_right = create_pool2d('max', 3, 2, padding=pad_type)
def forward(self, x):
x1 = self.conv_1x1(x)
x_comb_iter_0_left = self.comb_iter_0_left(x1)
x_comb_iter_0_right = self.comb_iter_0_right(x)
x_comb_iter_0 = x_comb_iter_0_left + x_comb_iter_0_right
x_comb_iter_1_left = self.comb_iter_1_left(x1)
x_comb_iter_1_right = self.comb_iter_1_right(x)
x_comb_iter_1 = x_comb_iter_1_left + x_comb_iter_1_right
x_comb_iter_2_left = self.comb_iter_2_left(x1)
x_comb_iter_2_right = self.comb_iter_2_right(x)
x_comb_iter_2 = x_comb_iter_2_left + x_comb_iter_2_right
x_comb_iter_3_right = self.comb_iter_3_right(x_comb_iter_0)
x_comb_iter_3 = x_comb_iter_3_right + x_comb_iter_1
x_comb_iter_4_left = self.comb_iter_4_left(x_comb_iter_0)
x_comb_iter_4_right = self.comb_iter_4_right(x1)
x_comb_iter_4 = x_comb_iter_4_left + x_comb_iter_4_right
x_out = torch.cat([x_comb_iter_1, x_comb_iter_2, x_comb_iter_3, x_comb_iter_4], 1)
return x_out
class CellStem1(nn.Module):
def __init__(self, stem_size, num_channels, pad_type=''):
super(CellStem1, self).__init__()
self.num_channels = num_channels
self.stem_size = stem_size
self.conv_1x1 = ActConvBn(2 * self.num_channels, self.num_channels, 1, stride=1)
self.act = nn.ReLU()
self.path_1 = nn.Sequential()
self.path_1.add_module('avgpool', nn.AvgPool2d(1, stride=2, count_include_pad=False))
self.path_1.add_module('conv', nn.Conv2d(self.stem_size, self.num_channels // 2, 1, stride=1, bias=False))
self.path_2 = nn.Sequential()
self.path_2.add_module('pad', nn.ZeroPad2d((-1, 1, -1, 1)))
self.path_2.add_module('avgpool', nn.AvgPool2d(1, stride=2, count_include_pad=False))
self.path_2.add_module('conv', nn.Conv2d(self.stem_size, self.num_channels // 2, 1, stride=1, bias=False))
self.final_path_bn = nn.BatchNorm2d(self.num_channels, eps=0.001, momentum=0.1)
self.comb_iter_0_left = BranchSeparables(self.num_channels, self.num_channels, 5, 2, pad_type)
self.comb_iter_0_right = BranchSeparables(self.num_channels, self.num_channels, 7, 2, pad_type)
self.comb_iter_1_left = create_pool2d('max', 3, 2, padding=pad_type)
self.comb_iter_1_right = BranchSeparables(self.num_channels, self.num_channels, 7, 2, pad_type)
self.comb_iter_2_left = create_pool2d('avg', 3, 2, count_include_pad=False, padding=pad_type)
self.comb_iter_2_right = BranchSeparables(self.num_channels, self.num_channels, 5, 2, pad_type)
self.comb_iter_3_right = create_pool2d('avg', 3, 1, count_include_pad=False, padding=pad_type)
self.comb_iter_4_left = BranchSeparables(self.num_channels, self.num_channels, 3, 1, pad_type)
self.comb_iter_4_right = create_pool2d('max', 3, 2, padding=pad_type)
def forward(self, x_conv0, x_stem_0):
x_left = self.conv_1x1(x_stem_0)
x_relu = self.act(x_conv0)
# path 1
x_path1 = self.path_1(x_relu)
# path 2
x_path2 = self.path_2(x_relu)
# final path
x_right = self.final_path_bn(torch.cat([x_path1, x_path2], 1))
x_comb_iter_0_left = self.comb_iter_0_left(x_left)
x_comb_iter_0_right = self.comb_iter_0_right(x_right)
x_comb_iter_0 = x_comb_iter_0_left + x_comb_iter_0_right
x_comb_iter_1_left = self.comb_iter_1_left(x_left)
x_comb_iter_1_right = self.comb_iter_1_right(x_right)
x_comb_iter_1 = x_comb_iter_1_left + x_comb_iter_1_right
x_comb_iter_2_left = self.comb_iter_2_left(x_left)
x_comb_iter_2_right = self.comb_iter_2_right(x_right)
x_comb_iter_2 = x_comb_iter_2_left + x_comb_iter_2_right
x_comb_iter_3_right = self.comb_iter_3_right(x_comb_iter_0)
x_comb_iter_3 = x_comb_iter_3_right + x_comb_iter_1
x_comb_iter_4_left = self.comb_iter_4_left(x_comb_iter_0)
x_comb_iter_4_right = self.comb_iter_4_right(x_left)
x_comb_iter_4 = x_comb_iter_4_left + x_comb_iter_4_right
x_out = torch.cat([x_comb_iter_1, x_comb_iter_2, x_comb_iter_3, x_comb_iter_4], 1)
return x_out
class FirstCell(nn.Module):
def __init__(self, in_chs_left, out_chs_left, in_chs_right, out_chs_right, pad_type=''):
super(FirstCell, self).__init__()
self.conv_1x1 = ActConvBn(in_chs_right, out_chs_right, 1, stride=1)
self.act = nn.ReLU()
self.path_1 = nn.Sequential()
self.path_1.add_module('avgpool', nn.AvgPool2d(1, stride=2, count_include_pad=False))
self.path_1.add_module('conv', nn.Conv2d(in_chs_left, out_chs_left, 1, stride=1, bias=False))
self.path_2 = nn.Sequential()
self.path_2.add_module('pad', nn.ZeroPad2d((-1, 1, -1, 1)))
self.path_2.add_module('avgpool', nn.AvgPool2d(1, stride=2, count_include_pad=False))
self.path_2.add_module('conv', nn.Conv2d(in_chs_left, out_chs_left, 1, stride=1, bias=False))
self.final_path_bn = nn.BatchNorm2d(out_chs_left * 2, eps=0.001, momentum=0.1)
self.comb_iter_0_left = BranchSeparables(out_chs_right, out_chs_right, 5, 1, pad_type)
self.comb_iter_0_right = BranchSeparables(out_chs_right, out_chs_right, 3, 1, pad_type)
self.comb_iter_1_left = BranchSeparables(out_chs_right, out_chs_right, 5, 1, pad_type)
self.comb_iter_1_right = BranchSeparables(out_chs_right, out_chs_right, 3, 1, pad_type)
self.comb_iter_2_left = create_pool2d('avg', 3, 1, count_include_pad=False, padding=pad_type)
self.comb_iter_3_left = create_pool2d('avg', 3, 1, count_include_pad=False, padding=pad_type)
self.comb_iter_3_right = create_pool2d('avg', 3, 1, count_include_pad=False, padding=pad_type)
self.comb_iter_4_left = BranchSeparables(out_chs_right, out_chs_right, 3, 1, pad_type)
def forward(self, x, x_prev):
x_relu = self.act(x_prev)
x_path1 = self.path_1(x_relu)
x_path2 = self.path_2(x_relu)
x_left = self.final_path_bn(torch.cat([x_path1, x_path2], 1))
x_right = self.conv_1x1(x)
x_comb_iter_0_left = self.comb_iter_0_left(x_right)
x_comb_iter_0_right = self.comb_iter_0_right(x_left)
x_comb_iter_0 = x_comb_iter_0_left + x_comb_iter_0_right
x_comb_iter_1_left = self.comb_iter_1_left(x_left)
x_comb_iter_1_right = self.comb_iter_1_right(x_left)
x_comb_iter_1 = x_comb_iter_1_left + x_comb_iter_1_right
x_comb_iter_2_left = self.comb_iter_2_left(x_right)
x_comb_iter_2 = x_comb_iter_2_left + x_left
x_comb_iter_3_left = self.comb_iter_3_left(x_left)
x_comb_iter_3_right = self.comb_iter_3_right(x_left)
x_comb_iter_3 = x_comb_iter_3_left + x_comb_iter_3_right
x_comb_iter_4_left = self.comb_iter_4_left(x_right)
x_comb_iter_4 = x_comb_iter_4_left + x_right
x_out = torch.cat([x_left, x_comb_iter_0, x_comb_iter_1, x_comb_iter_2, x_comb_iter_3, x_comb_iter_4], 1)
return x_out
class NormalCell(nn.Module):
def __init__(self, in_chs_left, out_chs_left, in_chs_right, out_chs_right, pad_type=''):
super(NormalCell, self).__init__()
self.conv_prev_1x1 = ActConvBn(in_chs_left, out_chs_left, 1, stride=1, padding=pad_type)
self.conv_1x1 = ActConvBn(in_chs_right, out_chs_right, 1, stride=1, padding=pad_type)
self.comb_iter_0_left = BranchSeparables(out_chs_right, out_chs_right, 5, 1, pad_type)
self.comb_iter_0_right = BranchSeparables(out_chs_left, out_chs_left, 3, 1, pad_type)
self.comb_iter_1_left = BranchSeparables(out_chs_left, out_chs_left, 5, 1, pad_type)
self.comb_iter_1_right = BranchSeparables(out_chs_left, out_chs_left, 3, 1, pad_type)
self.comb_iter_2_left = create_pool2d('avg', 3, 1, count_include_pad=False, padding=pad_type)
self.comb_iter_3_left = create_pool2d('avg', 3, 1, count_include_pad=False, padding=pad_type)
self.comb_iter_3_right = create_pool2d('avg', 3, 1, count_include_pad=False, padding=pad_type)
self.comb_iter_4_left = BranchSeparables(out_chs_right, out_chs_right, 3, 1, pad_type)
def forward(self, x, x_prev):
x_left = self.conv_prev_1x1(x_prev)
x_right = self.conv_1x1(x)
x_comb_iter_0_left = self.comb_iter_0_left(x_right)
x_comb_iter_0_right = self.comb_iter_0_right(x_left)
x_comb_iter_0 = x_comb_iter_0_left + x_comb_iter_0_right
x_comb_iter_1_left = self.comb_iter_1_left(x_left)
x_comb_iter_1_right = self.comb_iter_1_right(x_left)
x_comb_iter_1 = x_comb_iter_1_left + x_comb_iter_1_right
x_comb_iter_2_left = self.comb_iter_2_left(x_right)
x_comb_iter_2 = x_comb_iter_2_left + x_left
x_comb_iter_3_left = self.comb_iter_3_left(x_left)
x_comb_iter_3_right = self.comb_iter_3_right(x_left)
x_comb_iter_3 = x_comb_iter_3_left + x_comb_iter_3_right
x_comb_iter_4_left = self.comb_iter_4_left(x_right)
x_comb_iter_4 = x_comb_iter_4_left + x_right
x_out = torch.cat([x_left, x_comb_iter_0, x_comb_iter_1, x_comb_iter_2, x_comb_iter_3, x_comb_iter_4], 1)
return x_out
class ReductionCell0(nn.Module):
def __init__(self, in_chs_left, out_chs_left, in_chs_right, out_chs_right, pad_type=''):
super(ReductionCell0, self).__init__()
self.conv_prev_1x1 = ActConvBn(in_chs_left, out_chs_left, 1, stride=1, padding=pad_type)
self.conv_1x1 = ActConvBn(in_chs_right, out_chs_right, 1, stride=1, padding=pad_type)
self.comb_iter_0_left = BranchSeparables(out_chs_right, out_chs_right, 5, 2, pad_type)
self.comb_iter_0_right = BranchSeparables(out_chs_right, out_chs_right, 7, 2, pad_type)
self.comb_iter_1_left = create_pool2d('max', 3, 2, padding=pad_type)
self.comb_iter_1_right = BranchSeparables(out_chs_right, out_chs_right, 7, 2, pad_type)
self.comb_iter_2_left = create_pool2d('avg', 3, 2, count_include_pad=False, padding=pad_type)
self.comb_iter_2_right = BranchSeparables(out_chs_right, out_chs_right, 5, 2, pad_type)
self.comb_iter_3_right = create_pool2d('avg', 3, 1, count_include_pad=False, padding=pad_type)
self.comb_iter_4_left = BranchSeparables(out_chs_right, out_chs_right, 3, 1, pad_type)
self.comb_iter_4_right = create_pool2d('max', 3, 2, padding=pad_type)
def forward(self, x, x_prev):
x_left = self.conv_prev_1x1(x_prev)
x_right = self.conv_1x1(x)
x_comb_iter_0_left = self.comb_iter_0_left(x_right)
x_comb_iter_0_right = self.comb_iter_0_right(x_left)
x_comb_iter_0 = x_comb_iter_0_left + x_comb_iter_0_right
x_comb_iter_1_left = self.comb_iter_1_left(x_right)
x_comb_iter_1_right = self.comb_iter_1_right(x_left)
x_comb_iter_1 = x_comb_iter_1_left + x_comb_iter_1_right
x_comb_iter_2_left = self.comb_iter_2_left(x_right)
x_comb_iter_2_right = self.comb_iter_2_right(x_left)
x_comb_iter_2 = x_comb_iter_2_left + x_comb_iter_2_right
x_comb_iter_3_right = self.comb_iter_3_right(x_comb_iter_0)
x_comb_iter_3 = x_comb_iter_3_right + x_comb_iter_1
x_comb_iter_4_left = self.comb_iter_4_left(x_comb_iter_0)
x_comb_iter_4_right = self.comb_iter_4_right(x_right)
x_comb_iter_4 = x_comb_iter_4_left + x_comb_iter_4_right
x_out = torch.cat([x_comb_iter_1, x_comb_iter_2, x_comb_iter_3, x_comb_iter_4], 1)
return x_out
class ReductionCell1(nn.Module):
def __init__(self, in_chs_left, out_chs_left, in_chs_right, out_chs_right, pad_type=''):
super(ReductionCell1, self).__init__()
self.conv_prev_1x1 = ActConvBn(in_chs_left, out_chs_left, 1, stride=1, padding=pad_type)
self.conv_1x1 = ActConvBn(in_chs_right, out_chs_right, 1, stride=1, padding=pad_type)
self.comb_iter_0_left = BranchSeparables(out_chs_right, out_chs_right, 5, 2, pad_type)
self.comb_iter_0_right = BranchSeparables(out_chs_right, out_chs_right, 7, 2, pad_type)
self.comb_iter_1_left = create_pool2d('max', 3, 2, padding=pad_type)
self.comb_iter_1_right = BranchSeparables(out_chs_right, out_chs_right, 7, 2, pad_type)
self.comb_iter_2_left = create_pool2d('avg', 3, 2, count_include_pad=False, padding=pad_type)
self.comb_iter_2_right = BranchSeparables(out_chs_right, out_chs_right, 5, 2, pad_type)
self.comb_iter_3_right = create_pool2d('avg', 3, 1, count_include_pad=False, padding=pad_type)
self.comb_iter_4_left = BranchSeparables(out_chs_right, out_chs_right, 3, 1, pad_type)
self.comb_iter_4_right = create_pool2d('max', 3, 2, padding=pad_type)
def forward(self, x, x_prev):
x_left = self.conv_prev_1x1(x_prev)
x_right = self.conv_1x1(x)
x_comb_iter_0_left = self.comb_iter_0_left(x_right)
x_comb_iter_0_right = self.comb_iter_0_right(x_left)
x_comb_iter_0 = x_comb_iter_0_left + x_comb_iter_0_right
x_comb_iter_1_left = self.comb_iter_1_left(x_right)
x_comb_iter_1_right = self.comb_iter_1_right(x_left)
x_comb_iter_1 = x_comb_iter_1_left + x_comb_iter_1_right
x_comb_iter_2_left = self.comb_iter_2_left(x_right)
x_comb_iter_2_right = self.comb_iter_2_right(x_left)
x_comb_iter_2 = x_comb_iter_2_left + x_comb_iter_2_right
x_comb_iter_3_right = self.comb_iter_3_right(x_comb_iter_0)
x_comb_iter_3 = x_comb_iter_3_right + x_comb_iter_1
x_comb_iter_4_left = self.comb_iter_4_left(x_comb_iter_0)
x_comb_iter_4_right = self.comb_iter_4_right(x_right)
x_comb_iter_4 = x_comb_iter_4_left + x_comb_iter_4_right
x_out = torch.cat([x_comb_iter_1, x_comb_iter_2, x_comb_iter_3, x_comb_iter_4], 1)
return x_out
class NASNetALarge(nn.Module):
"""NASNetALarge (6 @ 4032) """
def __init__(
self, num_classes=1000, in_chans=3, stem_size=96, channel_multiplier=2,
num_features=4032, output_stride=32, drop_rate=0., global_pool='avg', pad_type='same'):
super(NASNetALarge, self).__init__()
self.num_classes = num_classes
self.stem_size = stem_size
self.num_features = num_features
self.channel_multiplier = channel_multiplier
self.drop_rate = drop_rate
assert output_stride == 32
channels = self.num_features // 24
# 24 is default value for the architecture
self.conv0 = ConvNormAct(
in_channels=in_chans, out_channels=self.stem_size, kernel_size=3, padding=0, stride=2,
norm_layer=partial(nn.BatchNorm2d, eps=0.001, momentum=0.1), apply_act=False)
self.cell_stem_0 = CellStem0(
self.stem_size, num_channels=channels // (channel_multiplier ** 2), pad_type=pad_type)
self.cell_stem_1 = CellStem1(
self.stem_size, num_channels=channels // channel_multiplier, pad_type=pad_type)
self.cell_0 = FirstCell(
in_chs_left=channels, out_chs_left=channels // 2,
in_chs_right=2 * channels, out_chs_right=channels, pad_type=pad_type)
self.cell_1 = NormalCell(
in_chs_left=2 * channels, out_chs_left=channels,
in_chs_right=6 * channels, out_chs_right=channels, pad_type=pad_type)
self.cell_2 = NormalCell(
in_chs_left=6 * channels, out_chs_left=channels,
in_chs_right=6 * channels, out_chs_right=channels, pad_type=pad_type)
self.cell_3 = NormalCell(
in_chs_left=6 * channels, out_chs_left=channels,
in_chs_right=6 * channels, out_chs_right=channels, pad_type=pad_type)
self.cell_4 = NormalCell(
in_chs_left=6 * channels, out_chs_left=channels,
in_chs_right=6 * channels, out_chs_right=channels, pad_type=pad_type)
self.cell_5 = NormalCell(
in_chs_left=6 * channels, out_chs_left=channels,
in_chs_right=6 * channels, out_chs_right=channels, pad_type=pad_type)
self.reduction_cell_0 = ReductionCell0(
in_chs_left=6 * channels, out_chs_left=2 * channels,
in_chs_right=6 * channels, out_chs_right=2 * channels, pad_type=pad_type)
self.cell_6 = FirstCell(
in_chs_left=6 * channels, out_chs_left=channels,
in_chs_right=8 * channels, out_chs_right=2 * channels, pad_type=pad_type)
self.cell_7 = NormalCell(
in_chs_left=8 * channels, out_chs_left=2 * channels,
in_chs_right=12 * channels, out_chs_right=2 * channels, pad_type=pad_type)
self.cell_8 = NormalCell(
in_chs_left=12 * channels, out_chs_left=2 * channels,
in_chs_right=12 * channels, out_chs_right=2 * channels, pad_type=pad_type)
self.cell_9 = NormalCell(
in_chs_left=12 * channels, out_chs_left=2 * channels,
in_chs_right=12 * channels, out_chs_right=2 * channels, pad_type=pad_type)
self.cell_10 = NormalCell(
in_chs_left=12 * channels, out_chs_left=2 * channels,
in_chs_right=12 * channels, out_chs_right=2 * channels, pad_type=pad_type)
self.cell_11 = NormalCell(
in_chs_left=12 * channels, out_chs_left=2 * channels,
in_chs_right=12 * channels, out_chs_right=2 * channels, pad_type=pad_type)
self.reduction_cell_1 = ReductionCell1(
in_chs_left=12 * channels, out_chs_left=4 * channels,
in_chs_right=12 * channels, out_chs_right=4 * channels, pad_type=pad_type)
self.cell_12 = FirstCell(
in_chs_left=12 * channels, out_chs_left=2 * channels,
in_chs_right=16 * channels, out_chs_right=4 * channels, pad_type=pad_type)
self.cell_13 = NormalCell(
in_chs_left=16 * channels, out_chs_left=4 * channels,
in_chs_right=24 * channels, out_chs_right=4 * channels, pad_type=pad_type)
self.cell_14 = NormalCell(
in_chs_left=24 * channels, out_chs_left=4 * channels,
in_chs_right=24 * channels, out_chs_right=4 * channels, pad_type=pad_type)
self.cell_15 = NormalCell(
in_chs_left=24 * channels, out_chs_left=4 * channels,
in_chs_right=24 * channels, out_chs_right=4 * channels, pad_type=pad_type)
self.cell_16 = NormalCell(
in_chs_left=24 * channels, out_chs_left=4 * channels,
in_chs_right=24 * channels, out_chs_right=4 * channels, pad_type=pad_type)
self.cell_17 = NormalCell(
in_chs_left=24 * channels, out_chs_left=4 * channels,
in_chs_right=24 * channels, out_chs_right=4 * channels, pad_type=pad_type)
self.act = nn.ReLU(inplace=True)
self.feature_info = [
dict(num_chs=96, reduction=2, module='conv0'),
dict(num_chs=168, reduction=4, module='cell_stem_1.conv_1x1.act'),
dict(num_chs=1008, reduction=8, module='reduction_cell_0.conv_1x1.act'),
dict(num_chs=2016, reduction=16, module='reduction_cell_1.conv_1x1.act'),
dict(num_chs=4032, reduction=32, module='act'),
]
self.global_pool, self.last_linear = create_classifier(
self.num_features, self.num_classes, pool_type=global_pool)
@torch.jit.ignore
def group_matcher(self, coarse=False):
matcher = dict(
stem=r'^conv0|cell_stem_[01]',
blocks=[
(r'^cell_(\d+)', None),
(r'^reduction_cell_0', (6,)),
(r'^reduction_cell_1', (12,)),
]
)
return matcher
@torch.jit.ignore
def set_grad_checkpointing(self, enable=True):
assert not enable, 'gradient checkpointing not supported'
@torch.jit.ignore
def get_classifier(self):
return self.last_linear
def reset_classifier(self, num_classes, global_pool='avg'):
self.num_classes = num_classes
self.global_pool, self.last_linear = create_classifier(
self.num_features, self.num_classes, pool_type=global_pool)
def forward_features(self, x):
x_conv0 = self.conv0(x)
x_stem_0 = self.cell_stem_0(x_conv0)
x_stem_1 = self.cell_stem_1(x_conv0, x_stem_0)
x_cell_0 = self.cell_0(x_stem_1, x_stem_0)
x_cell_1 = self.cell_1(x_cell_0, x_stem_1)
x_cell_2 = self.cell_2(x_cell_1, x_cell_0)
x_cell_3 = self.cell_3(x_cell_2, x_cell_1)
x_cell_4 = self.cell_4(x_cell_3, x_cell_2)
x_cell_5 = self.cell_5(x_cell_4, x_cell_3)
x_reduction_cell_0 = self.reduction_cell_0(x_cell_5, x_cell_4)
x_cell_6 = self.cell_6(x_reduction_cell_0, x_cell_4)
x_cell_7 = self.cell_7(x_cell_6, x_reduction_cell_0)
x_cell_8 = self.cell_8(x_cell_7, x_cell_6)
x_cell_9 = self.cell_9(x_cell_8, x_cell_7)
x_cell_10 = self.cell_10(x_cell_9, x_cell_8)
x_cell_11 = self.cell_11(x_cell_10, x_cell_9)
x_reduction_cell_1 = self.reduction_cell_1(x_cell_11, x_cell_10)
x_cell_12 = self.cell_12(x_reduction_cell_1, x_cell_10)
x_cell_13 = self.cell_13(x_cell_12, x_reduction_cell_1)
x_cell_14 = self.cell_14(x_cell_13, x_cell_12)
x_cell_15 = self.cell_15(x_cell_14, x_cell_13)
x_cell_16 = self.cell_16(x_cell_15, x_cell_14)
x_cell_17 = self.cell_17(x_cell_16, x_cell_15)
x = self.act(x_cell_17)
return x
def forward_head(self, x):
x = self.global_pool(x)
if self.drop_rate > 0:
x = F.dropout(x, self.drop_rate, training=self.training)
x = self.last_linear(x)
return x
def forward(self, x):
x = self.forward_features(x)
x = self.forward_head(x)
return x
def _create_nasnet(variant, pretrained=False, **kwargs):
return build_model_with_cfg(
NASNetALarge, variant, pretrained,
feature_cfg=dict(feature_cls='hook', no_rewrite=True), # not possible to re-write this model
**kwargs)
@register_model
def nasnetalarge(pretrained=False, **kwargs):
"""NASNet-A large model architecture.
"""
model_kwargs = dict(pad_type='same', **kwargs)
return _create_nasnet('nasnetalarge', pretrained, **model_kwargs)