gartajackhats1985's picture
Upload 1633 files
681fa96 verified
raw
history blame
3.02 kB
"""
This part reuses code from https://github.com/MandyMo/pytorch_HMR/blob/master/src/util.py
which is part of a PyTorch port of SMPL.
Thanks to Zhang Xiong (MandyMo) for making this great code available on github !
"""
import argparse
from torch.autograd import gradcheck
import torch
from torch.autograd import Variable
from custom_manopth import argutils
def quat2mat(quat):
"""Convert quaternion coefficients to rotation matrix.
Args:
quat: size = [batch_size, 4] 4 <===>(w, x, y, z)
Returns:
Rotation matrix corresponding to the quaternion -- size = [batch_size, 3, 3]
"""
norm_quat = quat
norm_quat = norm_quat / norm_quat.norm(p=2, dim=1, keepdim=True)
w, x, y, z = norm_quat[:, 0], norm_quat[:, 1], norm_quat[:,
2], norm_quat[:,
3]
batch_size = quat.size(0)
w2, x2, y2, z2 = w.pow(2), x.pow(2), y.pow(2), z.pow(2)
wx, wy, wz = w * x, w * y, w * z
xy, xz, yz = x * y, x * z, y * z
rotMat = torch.stack([
w2 + x2 - y2 - z2, 2 * xy - 2 * wz, 2 * wy + 2 * xz, 2 * wz + 2 * xy,
w2 - x2 + y2 - z2, 2 * yz - 2 * wx, 2 * xz - 2 * wy, 2 * wx + 2 * yz,
w2 - x2 - y2 + z2
],
dim=1).view(batch_size, 3, 3)
return rotMat
def batch_rodrigues(axisang):
#axisang N x 3
axisang_norm = torch.norm(axisang + 1e-8, p=2, dim=1)
angle = torch.unsqueeze(axisang_norm, -1)
axisang_normalized = torch.div(axisang, angle)
angle = angle * 0.5
v_cos = torch.cos(angle)
v_sin = torch.sin(angle)
quat = torch.cat([v_cos, v_sin * axisang_normalized], dim=1)
rot_mat = quat2mat(quat)
rot_mat = rot_mat.view(rot_mat.shape[0], 9)
return rot_mat
def th_get_axis_angle(vector):
angle = torch.norm(vector, 2, 1)
axes = vector / angle.unsqueeze(1)
return axes, angle
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--batch_size', default=1, type=int)
parser.add_argument('--cuda', action='store_true')
args = parser.parse_args()
argutils.print_args(args)
n_components = 6
rot = 3
inputs = torch.rand(args.batch_size, rot)
inputs_var = Variable(inputs.double(), requires_grad=True)
if args.cuda:
inputs = inputs.cuda()
# outputs = batch_rodrigues(inputs)
test_function = gradcheck(batch_rodrigues, (inputs_var, ))
print('batch test passed !')
inputs = torch.rand(rot)
inputs_var = Variable(inputs.double(), requires_grad=True)
test_function = gradcheck(th_cv2_rod_sub_id.apply, (inputs_var, ))
print('th_cv2_rod test passed')
inputs = torch.rand(rot)
inputs_var = Variable(inputs.double(), requires_grad=True)
test_th = gradcheck(th_cv2_rod.apply, (inputs_var, ))
print('th_cv2_rod_id test passed !')