Spaces:
Running
Running
""" | |
This part reuses code from https://github.com/MandyMo/pytorch_HMR/blob/master/src/util.py | |
which is part of a PyTorch port of SMPL. | |
Thanks to Zhang Xiong (MandyMo) for making this great code available on github ! | |
""" | |
import argparse | |
from torch.autograd import gradcheck | |
import torch | |
from torch.autograd import Variable | |
from custom_manopth import argutils | |
def quat2mat(quat): | |
"""Convert quaternion coefficients to rotation matrix. | |
Args: | |
quat: size = [batch_size, 4] 4 <===>(w, x, y, z) | |
Returns: | |
Rotation matrix corresponding to the quaternion -- size = [batch_size, 3, 3] | |
""" | |
norm_quat = quat | |
norm_quat = norm_quat / norm_quat.norm(p=2, dim=1, keepdim=True) | |
w, x, y, z = norm_quat[:, 0], norm_quat[:, 1], norm_quat[:, | |
2], norm_quat[:, | |
3] | |
batch_size = quat.size(0) | |
w2, x2, y2, z2 = w.pow(2), x.pow(2), y.pow(2), z.pow(2) | |
wx, wy, wz = w * x, w * y, w * z | |
xy, xz, yz = x * y, x * z, y * z | |
rotMat = torch.stack([ | |
w2 + x2 - y2 - z2, 2 * xy - 2 * wz, 2 * wy + 2 * xz, 2 * wz + 2 * xy, | |
w2 - x2 + y2 - z2, 2 * yz - 2 * wx, 2 * xz - 2 * wy, 2 * wx + 2 * yz, | |
w2 - x2 - y2 + z2 | |
], | |
dim=1).view(batch_size, 3, 3) | |
return rotMat | |
def batch_rodrigues(axisang): | |
#axisang N x 3 | |
axisang_norm = torch.norm(axisang + 1e-8, p=2, dim=1) | |
angle = torch.unsqueeze(axisang_norm, -1) | |
axisang_normalized = torch.div(axisang, angle) | |
angle = angle * 0.5 | |
v_cos = torch.cos(angle) | |
v_sin = torch.sin(angle) | |
quat = torch.cat([v_cos, v_sin * axisang_normalized], dim=1) | |
rot_mat = quat2mat(quat) | |
rot_mat = rot_mat.view(rot_mat.shape[0], 9) | |
return rot_mat | |
def th_get_axis_angle(vector): | |
angle = torch.norm(vector, 2, 1) | |
axes = vector / angle.unsqueeze(1) | |
return axes, angle | |
if __name__ == '__main__': | |
parser = argparse.ArgumentParser() | |
parser.add_argument('--batch_size', default=1, type=int) | |
parser.add_argument('--cuda', action='store_true') | |
args = parser.parse_args() | |
argutils.print_args(args) | |
n_components = 6 | |
rot = 3 | |
inputs = torch.rand(args.batch_size, rot) | |
inputs_var = Variable(inputs.double(), requires_grad=True) | |
if args.cuda: | |
inputs = inputs.cuda() | |
# outputs = batch_rodrigues(inputs) | |
test_function = gradcheck(batch_rodrigues, (inputs_var, )) | |
print('batch test passed !') | |
inputs = torch.rand(rot) | |
inputs_var = Variable(inputs.double(), requires_grad=True) | |
test_function = gradcheck(th_cv2_rod_sub_id.apply, (inputs_var, )) | |
print('th_cv2_rod test passed') | |
inputs = torch.rand(rot) | |
inputs_var = Variable(inputs.double(), requires_grad=True) | |
test_th = gradcheck(th_cv2_rod.apply, (inputs_var, )) | |
print('th_cv2_rod_id test passed !') | |