Spaces:
Running
Running
""" | |
pnasnet5large implementation grabbed from Cadene's pretrained models | |
Additional credit to https://github.com/creafz | |
https://github.com/Cadene/pretrained-models.pytorch/blob/master/pretrainedmodels/models/pnasnet.py | |
""" | |
from collections import OrderedDict | |
from functools import partial | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from .helpers import build_model_with_cfg | |
from .layers import ConvNormAct, create_conv2d, create_pool2d, create_classifier | |
from .registry import register_model | |
__all__ = ['PNASNet5Large'] | |
default_cfgs = { | |
'pnasnet5large': { | |
'url': 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-cadene/pnasnet5large-bf079911.pth', | |
'input_size': (3, 331, 331), | |
'pool_size': (11, 11), | |
'crop_pct': 0.911, | |
'interpolation': 'bicubic', | |
'mean': (0.5, 0.5, 0.5), | |
'std': (0.5, 0.5, 0.5), | |
'num_classes': 1000, | |
'first_conv': 'conv_0.conv', | |
'classifier': 'last_linear', | |
'label_offset': 1, # 1001 classes in pretrained weights | |
}, | |
} | |
class SeparableConv2d(nn.Module): | |
def __init__(self, in_channels, out_channels, kernel_size, stride, padding=''): | |
super(SeparableConv2d, self).__init__() | |
self.depthwise_conv2d = create_conv2d( | |
in_channels, in_channels, kernel_size=kernel_size, | |
stride=stride, padding=padding, groups=in_channels) | |
self.pointwise_conv2d = create_conv2d( | |
in_channels, out_channels, kernel_size=1, padding=padding) | |
def forward(self, x): | |
x = self.depthwise_conv2d(x) | |
x = self.pointwise_conv2d(x) | |
return x | |
class BranchSeparables(nn.Module): | |
def __init__(self, in_channels, out_channels, kernel_size, stride=1, stem_cell=False, padding=''): | |
super(BranchSeparables, self).__init__() | |
middle_channels = out_channels if stem_cell else in_channels | |
self.act_1 = nn.ReLU() | |
self.separable_1 = SeparableConv2d( | |
in_channels, middle_channels, kernel_size, stride=stride, padding=padding) | |
self.bn_sep_1 = nn.BatchNorm2d(middle_channels, eps=0.001) | |
self.act_2 = nn.ReLU() | |
self.separable_2 = SeparableConv2d( | |
middle_channels, out_channels, kernel_size, stride=1, padding=padding) | |
self.bn_sep_2 = nn.BatchNorm2d(out_channels, eps=0.001) | |
def forward(self, x): | |
x = self.act_1(x) | |
x = self.separable_1(x) | |
x = self.bn_sep_1(x) | |
x = self.act_2(x) | |
x = self.separable_2(x) | |
x = self.bn_sep_2(x) | |
return x | |
class ActConvBn(nn.Module): | |
def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=''): | |
super(ActConvBn, self).__init__() | |
self.act = nn.ReLU() | |
self.conv = create_conv2d( | |
in_channels, out_channels, kernel_size=kernel_size, stride=stride, padding=padding) | |
self.bn = nn.BatchNorm2d(out_channels, eps=0.001) | |
def forward(self, x): | |
x = self.act(x) | |
x = self.conv(x) | |
x = self.bn(x) | |
return x | |
class FactorizedReduction(nn.Module): | |
def __init__(self, in_channels, out_channels, padding=''): | |
super(FactorizedReduction, self).__init__() | |
self.act = nn.ReLU() | |
self.path_1 = nn.Sequential(OrderedDict([ | |
('avgpool', nn.AvgPool2d(1, stride=2, count_include_pad=False)), | |
('conv', create_conv2d(in_channels, out_channels // 2, kernel_size=1, padding=padding)), | |
])) | |
self.path_2 = nn.Sequential(OrderedDict([ | |
('pad', nn.ZeroPad2d((-1, 1, -1, 1))), # shift | |
('avgpool', nn.AvgPool2d(1, stride=2, count_include_pad=False)), | |
('conv', create_conv2d(in_channels, out_channels // 2, kernel_size=1, padding=padding)), | |
])) | |
self.final_path_bn = nn.BatchNorm2d(out_channels, eps=0.001) | |
def forward(self, x): | |
x = self.act(x) | |
x_path1 = self.path_1(x) | |
x_path2 = self.path_2(x) | |
out = self.final_path_bn(torch.cat([x_path1, x_path2], 1)) | |
return out | |
class CellBase(nn.Module): | |
def cell_forward(self, x_left, x_right): | |
x_comb_iter_0_left = self.comb_iter_0_left(x_left) | |
x_comb_iter_0_right = self.comb_iter_0_right(x_left) | |
x_comb_iter_0 = x_comb_iter_0_left + x_comb_iter_0_right | |
x_comb_iter_1_left = self.comb_iter_1_left(x_right) | |
x_comb_iter_1_right = self.comb_iter_1_right(x_right) | |
x_comb_iter_1 = x_comb_iter_1_left + x_comb_iter_1_right | |
x_comb_iter_2_left = self.comb_iter_2_left(x_right) | |
x_comb_iter_2_right = self.comb_iter_2_right(x_right) | |
x_comb_iter_2 = x_comb_iter_2_left + x_comb_iter_2_right | |
x_comb_iter_3_left = self.comb_iter_3_left(x_comb_iter_2) | |
x_comb_iter_3_right = self.comb_iter_3_right(x_right) | |
x_comb_iter_3 = x_comb_iter_3_left + x_comb_iter_3_right | |
x_comb_iter_4_left = self.comb_iter_4_left(x_left) | |
if self.comb_iter_4_right is not None: | |
x_comb_iter_4_right = self.comb_iter_4_right(x_right) | |
else: | |
x_comb_iter_4_right = x_right | |
x_comb_iter_4 = x_comb_iter_4_left + x_comb_iter_4_right | |
x_out = torch.cat([x_comb_iter_0, x_comb_iter_1, x_comb_iter_2, x_comb_iter_3, x_comb_iter_4], 1) | |
return x_out | |
class CellStem0(CellBase): | |
def __init__(self, in_chs_left, out_chs_left, in_chs_right, out_chs_right, pad_type=''): | |
super(CellStem0, self).__init__() | |
self.conv_1x1 = ActConvBn(in_chs_right, out_chs_right, kernel_size=1, padding=pad_type) | |
self.comb_iter_0_left = BranchSeparables( | |
in_chs_left, out_chs_left, kernel_size=5, stride=2, stem_cell=True, padding=pad_type) | |
self.comb_iter_0_right = nn.Sequential(OrderedDict([ | |
('max_pool', create_pool2d('max', 3, stride=2, padding=pad_type)), | |
('conv', create_conv2d(in_chs_left, out_chs_left, kernel_size=1, padding=pad_type)), | |
('bn', nn.BatchNorm2d(out_chs_left, eps=0.001)), | |
])) | |
self.comb_iter_1_left = BranchSeparables( | |
out_chs_right, out_chs_right, kernel_size=7, stride=2, padding=pad_type) | |
self.comb_iter_1_right = create_pool2d('max', 3, stride=2, padding=pad_type) | |
self.comb_iter_2_left = BranchSeparables( | |
out_chs_right, out_chs_right, kernel_size=5, stride=2, padding=pad_type) | |
self.comb_iter_2_right = BranchSeparables( | |
out_chs_right, out_chs_right, kernel_size=3, stride=2, padding=pad_type) | |
self.comb_iter_3_left = BranchSeparables( | |
out_chs_right, out_chs_right, kernel_size=3, padding=pad_type) | |
self.comb_iter_3_right = create_pool2d('max', 3, stride=2, padding=pad_type) | |
self.comb_iter_4_left = BranchSeparables( | |
in_chs_right, out_chs_right, kernel_size=3, stride=2, stem_cell=True, padding=pad_type) | |
self.comb_iter_4_right = ActConvBn( | |
out_chs_right, out_chs_right, kernel_size=1, stride=2, padding=pad_type) | |
def forward(self, x_left): | |
x_right = self.conv_1x1(x_left) | |
x_out = self.cell_forward(x_left, x_right) | |
return x_out | |
class Cell(CellBase): | |
def __init__(self, in_chs_left, out_chs_left, in_chs_right, out_chs_right, pad_type='', | |
is_reduction=False, match_prev_layer_dims=False): | |
super(Cell, self).__init__() | |
# If `is_reduction` is set to `True` stride 2 is used for | |
# convolution and pooling layers to reduce the spatial size of | |
# the output of a cell approximately by a factor of 2. | |
stride = 2 if is_reduction else 1 | |
# If `match_prev_layer_dimensions` is set to `True` | |
# `FactorizedReduction` is used to reduce the spatial size | |
# of the left input of a cell approximately by a factor of 2. | |
self.match_prev_layer_dimensions = match_prev_layer_dims | |
if match_prev_layer_dims: | |
self.conv_prev_1x1 = FactorizedReduction(in_chs_left, out_chs_left, padding=pad_type) | |
else: | |
self.conv_prev_1x1 = ActConvBn(in_chs_left, out_chs_left, kernel_size=1, padding=pad_type) | |
self.conv_1x1 = ActConvBn(in_chs_right, out_chs_right, kernel_size=1, padding=pad_type) | |
self.comb_iter_0_left = BranchSeparables( | |
out_chs_left, out_chs_left, kernel_size=5, stride=stride, padding=pad_type) | |
self.comb_iter_0_right = create_pool2d('max', 3, stride=stride, padding=pad_type) | |
self.comb_iter_1_left = BranchSeparables( | |
out_chs_right, out_chs_right, kernel_size=7, stride=stride, padding=pad_type) | |
self.comb_iter_1_right = create_pool2d('max', 3, stride=stride, padding=pad_type) | |
self.comb_iter_2_left = BranchSeparables( | |
out_chs_right, out_chs_right, kernel_size=5, stride=stride, padding=pad_type) | |
self.comb_iter_2_right = BranchSeparables( | |
out_chs_right, out_chs_right, kernel_size=3, stride=stride, padding=pad_type) | |
self.comb_iter_3_left = BranchSeparables(out_chs_right, out_chs_right, kernel_size=3) | |
self.comb_iter_3_right = create_pool2d('max', 3, stride=stride, padding=pad_type) | |
self.comb_iter_4_left = BranchSeparables( | |
out_chs_left, out_chs_left, kernel_size=3, stride=stride, padding=pad_type) | |
if is_reduction: | |
self.comb_iter_4_right = ActConvBn( | |
out_chs_right, out_chs_right, kernel_size=1, stride=stride, padding=pad_type) | |
else: | |
self.comb_iter_4_right = None | |
def forward(self, x_left, x_right): | |
x_left = self.conv_prev_1x1(x_left) | |
x_right = self.conv_1x1(x_right) | |
x_out = self.cell_forward(x_left, x_right) | |
return x_out | |
class PNASNet5Large(nn.Module): | |
def __init__(self, num_classes=1000, in_chans=3, output_stride=32, drop_rate=0., global_pool='avg', pad_type=''): | |
super(PNASNet5Large, self).__init__() | |
self.num_classes = num_classes | |
self.drop_rate = drop_rate | |
self.num_features = 4320 | |
assert output_stride == 32 | |
self.conv_0 = ConvNormAct( | |
in_chans, 96, kernel_size=3, stride=2, padding=0, | |
norm_layer=partial(nn.BatchNorm2d, eps=0.001, momentum=0.1), apply_act=False) | |
self.cell_stem_0 = CellStem0( | |
in_chs_left=96, out_chs_left=54, in_chs_right=96, out_chs_right=54, pad_type=pad_type) | |
self.cell_stem_1 = Cell( | |
in_chs_left=96, out_chs_left=108, in_chs_right=270, out_chs_right=108, pad_type=pad_type, | |
match_prev_layer_dims=True, is_reduction=True) | |
self.cell_0 = Cell( | |
in_chs_left=270, out_chs_left=216, in_chs_right=540, out_chs_right=216, pad_type=pad_type, | |
match_prev_layer_dims=True) | |
self.cell_1 = Cell( | |
in_chs_left=540, out_chs_left=216, in_chs_right=1080, out_chs_right=216, pad_type=pad_type) | |
self.cell_2 = Cell( | |
in_chs_left=1080, out_chs_left=216, in_chs_right=1080, out_chs_right=216, pad_type=pad_type) | |
self.cell_3 = Cell( | |
in_chs_left=1080, out_chs_left=216, in_chs_right=1080, out_chs_right=216, pad_type=pad_type) | |
self.cell_4 = Cell( | |
in_chs_left=1080, out_chs_left=432, in_chs_right=1080, out_chs_right=432, pad_type=pad_type, | |
is_reduction=True) | |
self.cell_5 = Cell( | |
in_chs_left=1080, out_chs_left=432, in_chs_right=2160, out_chs_right=432, pad_type=pad_type, | |
match_prev_layer_dims=True) | |
self.cell_6 = Cell( | |
in_chs_left=2160, out_chs_left=432, in_chs_right=2160, out_chs_right=432, pad_type=pad_type) | |
self.cell_7 = Cell( | |
in_chs_left=2160, out_chs_left=432, in_chs_right=2160, out_chs_right=432, pad_type=pad_type) | |
self.cell_8 = Cell( | |
in_chs_left=2160, out_chs_left=864, in_chs_right=2160, out_chs_right=864, pad_type=pad_type, | |
is_reduction=True) | |
self.cell_9 = Cell( | |
in_chs_left=2160, out_chs_left=864, in_chs_right=4320, out_chs_right=864, pad_type=pad_type, | |
match_prev_layer_dims=True) | |
self.cell_10 = Cell( | |
in_chs_left=4320, out_chs_left=864, in_chs_right=4320, out_chs_right=864, pad_type=pad_type) | |
self.cell_11 = Cell( | |
in_chs_left=4320, out_chs_left=864, in_chs_right=4320, out_chs_right=864, pad_type=pad_type) | |
self.act = nn.ReLU() | |
self.feature_info = [ | |
dict(num_chs=96, reduction=2, module='conv_0'), | |
dict(num_chs=270, reduction=4, module='cell_stem_1.conv_1x1.act'), | |
dict(num_chs=1080, reduction=8, module='cell_4.conv_1x1.act'), | |
dict(num_chs=2160, reduction=16, module='cell_8.conv_1x1.act'), | |
dict(num_chs=4320, reduction=32, module='act'), | |
] | |
self.global_pool, self.last_linear = create_classifier( | |
self.num_features, self.num_classes, pool_type=global_pool) | |
def group_matcher(self, coarse=False): | |
return dict(stem=r'^conv_0|cell_stem_[01]', blocks=r'^cell_(\d+)') | |
def set_grad_checkpointing(self, enable=True): | |
assert not enable, 'gradient checkpointing not supported' | |
def get_classifier(self): | |
return self.last_linear | |
def reset_classifier(self, num_classes, global_pool='avg'): | |
self.num_classes = num_classes | |
self.global_pool, self.last_linear = create_classifier( | |
self.num_features, self.num_classes, pool_type=global_pool) | |
def forward_features(self, x): | |
x_conv_0 = self.conv_0(x) | |
x_stem_0 = self.cell_stem_0(x_conv_0) | |
x_stem_1 = self.cell_stem_1(x_conv_0, x_stem_0) | |
x_cell_0 = self.cell_0(x_stem_0, x_stem_1) | |
x_cell_1 = self.cell_1(x_stem_1, x_cell_0) | |
x_cell_2 = self.cell_2(x_cell_0, x_cell_1) | |
x_cell_3 = self.cell_3(x_cell_1, x_cell_2) | |
x_cell_4 = self.cell_4(x_cell_2, x_cell_3) | |
x_cell_5 = self.cell_5(x_cell_3, x_cell_4) | |
x_cell_6 = self.cell_6(x_cell_4, x_cell_5) | |
x_cell_7 = self.cell_7(x_cell_5, x_cell_6) | |
x_cell_8 = self.cell_8(x_cell_6, x_cell_7) | |
x_cell_9 = self.cell_9(x_cell_7, x_cell_8) | |
x_cell_10 = self.cell_10(x_cell_8, x_cell_9) | |
x_cell_11 = self.cell_11(x_cell_9, x_cell_10) | |
x = self.act(x_cell_11) | |
return x | |
def forward_head(self, x, pre_logits: bool = False): | |
x = self.global_pool(x) | |
if self.drop_rate > 0: | |
x = F.dropout(x, self.drop_rate, training=self.training) | |
return x if pre_logits else self.last_linear(x) | |
def forward(self, x): | |
x = self.forward_features(x) | |
x = self.forward_head(x) | |
return x | |
def _create_pnasnet(variant, pretrained=False, **kwargs): | |
return build_model_with_cfg( | |
PNASNet5Large, variant, pretrained, | |
feature_cfg=dict(feature_cls='hook', no_rewrite=True), # not possible to re-write this model | |
**kwargs) | |
def pnasnet5large(pretrained=False, **kwargs): | |
r"""PNASNet-5 model architecture from the | |
`"Progressive Neural Architecture Search" | |
<https://arxiv.org/abs/1712.00559>`_ paper. | |
""" | |
model_kwargs = dict(pad_type='same', **kwargs) | |
return _create_pnasnet('pnasnet5large', pretrained, **model_kwargs) | |