Spaces:
Running
Running
import torch | |
from custom_manopth import rodrigues_layer | |
def th_posemap_axisang(pose_vectors): | |
rot_nb = int(pose_vectors.shape[1] / 3) | |
pose_vec_reshaped = pose_vectors.contiguous().view(-1, 3) | |
rot_mats = rodrigues_layer.batch_rodrigues(pose_vec_reshaped) | |
rot_mats = rot_mats.view(pose_vectors.shape[0], rot_nb * 9) | |
pose_maps = subtract_flat_id(rot_mats) | |
return pose_maps, rot_mats | |
def th_with_zeros(tensor): | |
batch_size = tensor.shape[0] | |
padding = torch.tensor([0.0, 0.0, 0.0, 1.0], device = tensor.device, dtype = tensor.dtype) | |
padding.requires_grad = False | |
concat_list = [tensor, padding.view(1, 1, 4).repeat(batch_size, 1, 1)] | |
cat_res = torch.cat(concat_list, 1) | |
return cat_res | |
def th_pack(tensor): | |
batch_size = tensor.shape[0] | |
padding = tensor.new_zeros((batch_size, 4, 3)) | |
padding.requires_grad = False | |
pack_list = [padding, tensor] | |
pack_res = torch.cat(pack_list, 2) | |
return pack_res | |
def subtract_flat_id(rot_mats): | |
# Subtracts identity as a flattened tensor | |
rot_nb = int(rot_mats.shape[1] / 9) | |
id_flat = torch.eye( | |
3, dtype=rot_mats.dtype, device=rot_mats.device).view(1, 9).repeat( | |
rot_mats.shape[0], rot_nb) | |
# id_flat.requires_grad = False | |
results = rot_mats - id_flat | |
return results | |
def make_list(tensor): | |
# type: (List[int]) -> List[int] | |
return tensor | |