gartajackhats1985's picture
Upload 171 files
c37b2dd verified
from impact.utils import *
from impact import impact_sampling
from comfy import model_management
from comfy.cli_args import args
import nodes
try:
from comfy_extras import nodes_differential_diffusion
except Exception:
print(f"[Impact Pack] ComfyUI is an outdated version. The DifferentialDiffusion feature will be disabled.")
# Implementation based on `https://github.com/lingondricka2/Upscaler-Detailer`
# code from comfyroll --->
# https://github.com/Suzie1/ComfyUI_Comfyroll_CustomNodes/blob/main/nodes/functions_upscale.py
def upscale_with_model(upscale_model, image):
device = model_management.get_torch_device()
upscale_model.to(device)
in_img = image.movedim(-1, -3).to(device)
free_memory = model_management.get_free_memory(device)
tile = 512
overlap = 32
oom = True
while oom:
try:
steps = in_img.shape[0] * comfy.utils.get_tiled_scale_steps(in_img.shape[3], in_img.shape[2], tile_x=tile, tile_y=tile, overlap=overlap)
pbar = comfy.utils.ProgressBar(steps)
s = comfy.utils.tiled_scale(in_img, lambda a: upscale_model(a), tile_x=tile, tile_y=tile, overlap=overlap, upscale_amount=upscale_model.scale, pbar=pbar)
oom = False
except model_management.OOM_EXCEPTION as e:
tile //= 2
if tile < 128:
raise e
s = torch.clamp(s.movedim(-3, -1), min=0, max=1.0)
return s
def apply_resize_image(image: Image.Image, original_width, original_height, rounding_modulus, mode='scale', supersample='true', factor: int = 2, width: int = 1024, height: int = 1024,
resample='bicubic'):
# Calculate the new width and height based on the given mode and parameters
if mode == 'rescale':
new_width, new_height = int(original_width * factor), int(original_height * factor)
else:
m = rounding_modulus
original_ratio = original_height / original_width
height = int(width * original_ratio)
new_width = width if width % m == 0 else width + (m - width % m)
new_height = height if height % m == 0 else height + (m - height % m)
# Define a dictionary of resampling filters
resample_filters = {'nearest': 0, 'bilinear': 2, 'bicubic': 3, 'lanczos': 1}
# Apply supersample
if supersample == 'true':
image = image.resize((new_width * 8, new_height * 8), resample=Image.Resampling(resample_filters[resample]))
# Resize the image using the given resampling filter
resized_image = image.resize((new_width, new_height), resample=Image.Resampling(resample_filters[resample]))
return resized_image
def upscaler(image, upscale_model, rescale_factor, resampling_method, supersample, rounding_modulus):
if upscale_model is not None:
up_image = upscale_with_model(upscale_model, image)
else:
up_image = image
pil_img = tensor2pil(image)
original_width, original_height = pil_img.size
scaled_image = pil2tensor(apply_resize_image(tensor2pil(up_image), original_width, original_height, rounding_modulus, 'rescale',
supersample, rescale_factor, 1024, resampling_method))
return scaled_image
# <---
def img2img_segs(image, model, clip, vae, seed, steps, cfg, sampler_name, scheduler,
positive, negative, denoise, noise_mask, control_net_wrapper=None,
inpaint_model=False, noise_mask_feather=0, scheduler_func_opt=None):
original_image_size = image.shape[1:3]
# Match to original image size
if original_image_size[0] % 8 > 0 or original_image_size[1] % 8 > 0:
scale = 8/min(original_image_size[0], original_image_size[1]) + 1
w = int(original_image_size[1] * scale)
h = int(original_image_size[0] * scale)
image = tensor_resize(image, w, h)
if noise_mask is not None:
noise_mask = tensor_gaussian_blur_mask(noise_mask, noise_mask_feather)
noise_mask = noise_mask.squeeze(3)
if noise_mask_feather > 0 and 'denoise_mask_function' not in model.model_options:
model = nodes_differential_diffusion.DifferentialDiffusion().apply(model)[0]
if control_net_wrapper is not None:
positive, negative, _ = control_net_wrapper.apply(positive, negative, image, noise_mask)
# prepare mask
if noise_mask is not None and inpaint_model:
positive, negative, latent_image = nodes.InpaintModelConditioning().encode(positive, negative, image, vae, noise_mask)
else:
latent_image = to_latent_image(image, vae)
if noise_mask is not None:
latent_image['noise_mask'] = noise_mask
refined_latent = latent_image
# ksampler
refined_latent = impact_sampling.ksampler_wrapper(model, seed, steps, cfg, sampler_name, scheduler, positive, negative, refined_latent, denoise, scheduler_func=scheduler_func_opt)
# non-latent downscale - latent downscale cause bad quality
refined_image = vae.decode(refined_latent['samples'])
# prevent mixing of device
refined_image = refined_image.cpu()
# Match to original image size
if refined_image.shape[1:3] != original_image_size:
refined_image = tensor_resize(refined_image, original_image_size[1], original_image_size[0])
# don't convert to latent - latent break image
# preserving pil is much better
return refined_image