Spaces:
Running
Running
import torch | |
import torchvision | |
import cv2 | |
import numpy as np | |
import folder_paths | |
import nodes | |
from . import config | |
from PIL import Image | |
import comfy | |
class TensorBatchBuilder: | |
def __init__(self): | |
self.tensor = None | |
def concat(self, new_tensor): | |
if self.tensor is None: | |
self.tensor = new_tensor | |
else: | |
self.tensor = torch.concat((self.tensor, new_tensor), dim=0) | |
def tensor_convert_rgba(image, prefer_copy=True): | |
"""Assumes NHWC format tensor with 1, 3 or 4 channels.""" | |
_tensor_check_image(image) | |
n_channel = image.shape[-1] | |
if n_channel == 4: | |
return image | |
if n_channel == 3: | |
alpha = torch.ones((*image.shape[:-1], 1)) | |
return torch.cat((image, alpha), axis=-1) | |
if n_channel == 1: | |
if prefer_copy: | |
image = image.repeat(1, -1, -1, 4) | |
else: | |
image = image.expand(1, -1, -1, 3) | |
return image | |
# NOTE: Similar error message as in PIL, for easier googling :P | |
raise ValueError(f"illegal conversion (channels: {n_channel} -> 4)") | |
def tensor_convert_rgb(image, prefer_copy=True): | |
"""Assumes NHWC format tensor with 1, 3 or 4 channels.""" | |
_tensor_check_image(image) | |
n_channel = image.shape[-1] | |
if n_channel == 3: | |
return image | |
if n_channel == 4: | |
image = image[..., :3] | |
if prefer_copy: | |
image = image.copy() | |
return image | |
if n_channel == 1: | |
if prefer_copy: | |
image = image.repeat(1, -1, -1, 4) | |
else: | |
image = image.expand(1, -1, -1, 3) | |
return image | |
# NOTE: Same error message as in PIL, for easier googling :P | |
raise ValueError(f"illegal conversion (channels: {n_channel} -> 3)") | |
def general_tensor_resize(image, w: int, h: int): | |
_tensor_check_image(image) | |
image = image.permute(0, 3, 1, 2) | |
image = torch.nn.functional.interpolate(image, size=(h, w), mode="bilinear") | |
image = image.permute(0, 2, 3, 1) | |
return image | |
# TODO: Sadly, we need LANCZOS | |
LANCZOS = (Image.Resampling.LANCZOS if hasattr(Image, 'Resampling') else Image.LANCZOS) | |
def tensor_resize(image, w: int, h: int): | |
_tensor_check_image(image) | |
if image.shape[3] >= 3: | |
scaled_images = TensorBatchBuilder() | |
for single_image in image: | |
single_image = single_image.unsqueeze(0) | |
single_pil = tensor2pil(single_image) | |
scaled_pil = single_pil.resize((w, h), resample=LANCZOS) | |
single_image = pil2tensor(scaled_pil) | |
scaled_images.concat(single_image) | |
return scaled_images.tensor | |
else: | |
return general_tensor_resize(image, w, h) | |
def tensor_get_size(image): | |
"""Mimicking `PIL.Image.size`""" | |
_tensor_check_image(image) | |
_, h, w, _ = image.shape | |
return (w, h) | |
def tensor2pil(image): | |
_tensor_check_image(image) | |
return Image.fromarray(np.clip(255. * image.cpu().numpy().squeeze(0), 0, 255).astype(np.uint8)) | |
def pil2tensor(image): | |
return torch.from_numpy(np.array(image).astype(np.float32) / 255.0).unsqueeze(0) | |
def numpy2pil(image): | |
return Image.fromarray(np.clip(255. * image.squeeze(0), 0, 255).astype(np.uint8)) | |
def to_pil(image): | |
if isinstance(image, Image.Image): | |
return image | |
if isinstance(image, torch.Tensor): | |
return tensor2pil(image) | |
if isinstance(image, np.ndarray): | |
return numpy2pil(image) | |
raise ValueError(f"Cannot convert {type(image)} to PIL.Image") | |
def to_tensor(image): | |
if isinstance(image, Image.Image): | |
return torch.from_numpy(np.array(image)) / 255.0 | |
if isinstance(image, torch.Tensor): | |
return image | |
if isinstance(image, np.ndarray): | |
return torch.from_numpy(image) | |
raise ValueError(f"Cannot convert {type(image)} to torch.Tensor") | |
def to_numpy(image): | |
if isinstance(image, Image.Image): | |
return np.array(image) | |
if isinstance(image, torch.Tensor): | |
return image.numpy() | |
if isinstance(image, np.ndarray): | |
return image | |
raise ValueError(f"Cannot convert {type(image)} to numpy.ndarray") | |
def tensor_putalpha(image, mask): | |
_tensor_check_image(image) | |
_tensor_check_mask(mask) | |
image[..., -1] = mask[..., 0] | |
def _tensor_check_image(image): | |
if image.ndim != 4: | |
raise ValueError(f"Expected NHWC tensor, but found {image.ndim} dimensions") | |
if image.shape[-1] not in (1, 3, 4): | |
raise ValueError(f"Expected 1, 3 or 4 channels for image, but found {image.shape[-1]} channels") | |
return | |
def _tensor_check_mask(mask): | |
if mask.ndim != 4: | |
raise ValueError(f"Expected NHWC tensor, but found {mask.ndim} dimensions") | |
if mask.shape[-1] != 1: | |
raise ValueError(f"Expected 1 channel for mask, but found {mask.shape[-1]} channels") | |
return | |
def tensor_crop(image, crop_region): | |
_tensor_check_image(image) | |
return crop_ndarray4(image, crop_region) | |
def tensor2numpy(image): | |
_tensor_check_image(image) | |
return image.numpy() | |
def tensor_paste(image1, image2, left_top, mask): | |
"""Mask and image2 has to be the same size""" | |
_tensor_check_image(image1) | |
_tensor_check_image(image2) | |
_tensor_check_mask(mask) | |
if image2.shape[1:3] != mask.shape[1:3]: | |
mask = resize_mask(mask.squeeze(dim=3), image2.shape[1:3]).unsqueeze(dim=3) | |
# raise ValueError(f"Inconsistent size: Image ({image2.shape[1:3]}) != Mask ({mask.shape[1:3]})") | |
x, y = left_top | |
_, h1, w1, _ = image1.shape | |
_, h2, w2, _ = image2.shape | |
# calculate image patch size | |
w = min(w1, x + w2) - x | |
h = min(h1, y + h2) - y | |
# If the patch is out of bound, nothing to do! | |
if w <= 0 or h <= 0: | |
return | |
mask = mask[:, :h, :w, :] | |
image1[:, y:y+h, x:x+w, :] = ( | |
(1 - mask) * image1[:, y:y+h, x:x+w, :] + | |
mask * image2[:, :h, :w, :] | |
) | |
return | |
def center_of_bbox(bbox): | |
w, h = bbox[2] - bbox[0], bbox[3] - bbox[1] | |
return bbox[0] + w/2, bbox[1] + h/2 | |
def combine_masks(masks): | |
if len(masks) == 0: | |
return None | |
else: | |
initial_cv2_mask = np.array(masks[0][1]) | |
combined_cv2_mask = initial_cv2_mask | |
for i in range(1, len(masks)): | |
cv2_mask = np.array(masks[i][1]) | |
if combined_cv2_mask.shape == cv2_mask.shape: | |
combined_cv2_mask = cv2.bitwise_or(combined_cv2_mask, cv2_mask) | |
else: | |
# do nothing - incompatible mask | |
pass | |
mask = torch.from_numpy(combined_cv2_mask) | |
return mask | |
def combine_masks2(masks): | |
if len(masks) == 0: | |
return None | |
else: | |
initial_cv2_mask = np.array(masks[0]).astype(np.uint8) | |
combined_cv2_mask = initial_cv2_mask | |
for i in range(1, len(masks)): | |
cv2_mask = np.array(masks[i]).astype(np.uint8) | |
if combined_cv2_mask.shape == cv2_mask.shape: | |
combined_cv2_mask = cv2.bitwise_or(combined_cv2_mask, cv2_mask) | |
else: | |
# do nothing - incompatible mask | |
pass | |
mask = torch.from_numpy(combined_cv2_mask) | |
return mask | |
def bitwise_and_masks(mask1, mask2): | |
mask1 = mask1.cpu() | |
mask2 = mask2.cpu() | |
cv2_mask1 = np.array(mask1) | |
cv2_mask2 = np.array(mask2) | |
if cv2_mask1.shape == cv2_mask2.shape: | |
cv2_mask = cv2.bitwise_and(cv2_mask1, cv2_mask2) | |
return torch.from_numpy(cv2_mask) | |
else: | |
# do nothing - incompatible mask shape: mostly empty mask | |
return mask1 | |
def to_binary_mask(mask, threshold=0): | |
mask = make_3d_mask(mask) | |
mask = mask.clone().cpu() | |
mask[mask > threshold] = 1. | |
mask[mask <= threshold] = 0. | |
return mask | |
def use_gpu_opencv(): | |
return not config.get_config()['disable_gpu_opencv'] | |
def dilate_mask(mask, dilation_factor, iter=1): | |
if dilation_factor == 0: | |
return make_2d_mask(mask) | |
mask = make_2d_mask(mask) | |
kernel = np.ones((abs(dilation_factor), abs(dilation_factor)), np.uint8) | |
if use_gpu_opencv(): | |
mask = cv2.UMat(mask) | |
kernel = cv2.UMat(kernel) | |
if dilation_factor > 0: | |
result = cv2.dilate(mask, kernel, iter) | |
else: | |
result = cv2.erode(mask, kernel, iter) | |
if use_gpu_opencv(): | |
return result.get() | |
else: | |
return result | |
def dilate_masks(segmasks, dilation_factor, iter=1): | |
if dilation_factor == 0: | |
return segmasks | |
dilated_masks = [] | |
kernel = np.ones((abs(dilation_factor), abs(dilation_factor)), np.uint8) | |
if use_gpu_opencv(): | |
kernel = cv2.UMat(kernel) | |
for i in range(len(segmasks)): | |
cv2_mask = segmasks[i][1] | |
if use_gpu_opencv(): | |
cv2_mask = cv2.UMat(cv2_mask) | |
if dilation_factor > 0: | |
dilated_mask = cv2.dilate(cv2_mask, kernel, iter) | |
else: | |
dilated_mask = cv2.erode(cv2_mask, kernel, iter) | |
if use_gpu_opencv(): | |
dilated_mask = dilated_mask.get() | |
item = (segmasks[i][0], dilated_mask, segmasks[i][2]) | |
dilated_masks.append(item) | |
return dilated_masks | |
import torch.nn.functional as F | |
def feather_mask(mask, thickness): | |
mask = mask.permute(0, 3, 1, 2) | |
# Gaussian kernel for blurring | |
kernel_size = 2 * int(thickness) + 1 | |
sigma = thickness / 3 # Adjust the sigma value as needed | |
blur_kernel = _gaussian_kernel(kernel_size, sigma).to(mask.device, mask.dtype) | |
# Apply blur to the mask | |
blurred_mask = F.conv2d(mask, blur_kernel.unsqueeze(0).unsqueeze(0), padding=thickness) | |
blurred_mask = blurred_mask.permute(0, 2, 3, 1) | |
return blurred_mask | |
def _gaussian_kernel(kernel_size, sigma): | |
# Generate a 1D Gaussian kernel | |
kernel = torch.exp(-(torch.arange(kernel_size) - kernel_size // 2)**2 / (2 * sigma**2)) | |
return kernel / kernel.sum() | |
def tensor_gaussian_blur_mask(mask, kernel_size, sigma=10.0): | |
"""Return NHWC torch.Tenser from ndim == 2 or 4 `np.ndarray` or `torch.Tensor`""" | |
if isinstance(mask, np.ndarray): | |
mask = torch.from_numpy(mask) | |
if mask.ndim == 2: | |
mask = mask[None, ..., None] | |
elif mask.ndim == 3: | |
mask = mask[..., None] | |
_tensor_check_mask(mask) | |
if kernel_size <= 0: | |
return mask | |
kernel_size = kernel_size*2+1 | |
shortest = min(mask.shape[1], mask.shape[2]) | |
if shortest <= kernel_size: | |
kernel_size = int(shortest/2) | |
if kernel_size % 2 == 0: | |
kernel_size += 1 | |
if kernel_size < 3: | |
return mask # skip feathering | |
prev_device = mask.device | |
device = comfy.model_management.get_torch_device() | |
mask.to(device) | |
# apply gaussian blur | |
mask = mask[:, None, ..., 0] | |
blurred_mask = torchvision.transforms.GaussianBlur(kernel_size=kernel_size, sigma=sigma)(mask) | |
blurred_mask = blurred_mask[:, 0, ..., None] | |
blurred_mask.to(prev_device) | |
return blurred_mask | |
def subtract_masks(mask1, mask2): | |
mask1 = mask1.cpu() | |
mask2 = mask2.cpu() | |
cv2_mask1 = np.array(mask1) * 255 | |
cv2_mask2 = np.array(mask2) * 255 | |
if cv2_mask1.shape == cv2_mask2.shape: | |
cv2_mask = cv2.subtract(cv2_mask1, cv2_mask2) | |
return torch.clamp(torch.from_numpy(cv2_mask) / 255.0, min=0, max=1) | |
else: | |
# do nothing - incompatible mask shape: mostly empty mask | |
return mask1 | |
def add_masks(mask1, mask2): | |
mask1 = mask1.cpu() | |
mask2 = mask2.cpu() | |
cv2_mask1 = np.array(mask1) * 255 | |
cv2_mask2 = np.array(mask2) * 255 | |
if cv2_mask1.shape == cv2_mask2.shape: | |
cv2_mask = cv2.add(cv2_mask1, cv2_mask2) | |
return torch.clamp(torch.from_numpy(cv2_mask) / 255.0, min=0, max=1) | |
else: | |
# do nothing - incompatible mask shape: mostly empty mask | |
return mask1 | |
def normalize_region(limit, startp, size): | |
if startp < 0: | |
new_endp = min(limit, size) | |
new_startp = 0 | |
elif startp + size > limit: | |
new_startp = max(0, limit - size) | |
new_endp = limit | |
else: | |
new_startp = startp | |
new_endp = min(limit, startp+size) | |
return int(new_startp), int(new_endp) | |
def make_crop_region(w, h, bbox, crop_factor, crop_min_size=None): | |
x1 = bbox[0] | |
y1 = bbox[1] | |
x2 = bbox[2] | |
y2 = bbox[3] | |
bbox_w = x2 - x1 | |
bbox_h = y2 - y1 | |
crop_w = bbox_w * crop_factor | |
crop_h = bbox_h * crop_factor | |
if crop_min_size is not None: | |
crop_w = max(crop_min_size, crop_w) | |
crop_h = max(crop_min_size, crop_h) | |
kernel_x = x1 + bbox_w / 2 | |
kernel_y = y1 + bbox_h / 2 | |
new_x1 = int(kernel_x - crop_w / 2) | |
new_y1 = int(kernel_y - crop_h / 2) | |
# make sure position in (w,h) | |
new_x1, new_x2 = normalize_region(w, new_x1, crop_w) | |
new_y1, new_y2 = normalize_region(h, new_y1, crop_h) | |
return [new_x1, new_y1, new_x2, new_y2] | |
def crop_ndarray4(npimg, crop_region): | |
x1 = crop_region[0] | |
y1 = crop_region[1] | |
x2 = crop_region[2] | |
y2 = crop_region[3] | |
cropped = npimg[:, y1:y2, x1:x2, :] | |
return cropped | |
crop_tensor4 = crop_ndarray4 | |
def crop_ndarray3(npimg, crop_region): | |
x1 = crop_region[0] | |
y1 = crop_region[1] | |
x2 = crop_region[2] | |
y2 = crop_region[3] | |
cropped = npimg[:, y1:y2, x1:x2] | |
return cropped | |
def crop_ndarray2(npimg, crop_region): | |
x1 = crop_region[0] | |
y1 = crop_region[1] | |
x2 = crop_region[2] | |
y2 = crop_region[3] | |
cropped = npimg[y1:y2, x1:x2] | |
return cropped | |
def crop_image(image, crop_region): | |
return crop_tensor4(image, crop_region) | |
def to_latent_image(pixels, vae): | |
x = pixels.shape[1] | |
y = pixels.shape[2] | |
if pixels.shape[1] != x or pixels.shape[2] != y: | |
pixels = pixels[:, :x, :y, :] | |
vae_encode = nodes.VAEEncode() | |
return vae_encode.encode(vae, pixels)[0] | |
def empty_pil_tensor(w=64, h=64): | |
return torch.zeros((1, h, w, 3), dtype=torch.float32) | |
def make_2d_mask(mask): | |
if len(mask.shape) == 4: | |
return mask.squeeze(0).squeeze(0) | |
elif len(mask.shape) == 3: | |
return mask.squeeze(0) | |
return mask | |
def make_3d_mask(mask): | |
if len(mask.shape) == 4: | |
return mask.squeeze(0) | |
elif len(mask.shape) == 2: | |
return mask.unsqueeze(0) | |
return mask | |
def make_4d_mask(mask): | |
if len(mask.shape) == 3: | |
return mask.unsqueeze(0) | |
elif len(mask.shape) == 2: | |
return mask.unsqueeze(0).unsqueeze(0) | |
return mask | |
def is_same_device(a, b): | |
a_device = torch.device(a) if isinstance(a, str) else a | |
b_device = torch.device(b) if isinstance(b, str) else b | |
return a_device.type == b_device.type and a_device.index == b_device.index | |
def collect_non_reroute_nodes(node_map, links, res, node_id): | |
if node_map[node_id]['type'] != 'Reroute' and node_map[node_id]['type'] != 'Reroute (rgthree)': | |
res.append(node_id) | |
else: | |
for link in node_map[node_id]['outputs'][0]['links']: | |
next_node_id = str(links[link][2]) | |
collect_non_reroute_nodes(node_map, links, res, next_node_id) | |
from torchvision.transforms.functional import to_pil_image | |
def resize_mask(mask, size): | |
mask = make_4d_mask(mask) | |
resized_mask = torch.nn.functional.interpolate(mask, size=size, mode='bilinear', align_corners=False) | |
return resized_mask.squeeze(0) | |
def apply_mask_alpha_to_pil(decoded_pil, mask): | |
decoded_rgba = decoded_pil.convert('RGBA') | |
mask_pil = to_pil_image(mask) | |
decoded_rgba.putalpha(mask_pil) | |
return decoded_rgba | |
def flatten_mask(all_masks): | |
merged_mask = (all_masks[0] * 255).to(torch.uint8) | |
for mask in all_masks[1:]: | |
merged_mask |= (mask * 255).to(torch.uint8) | |
return merged_mask | |
def try_install_custom_node(custom_node_url, msg): | |
try: | |
import cm_global | |
cm_global.try_call(api='cm.try-install-custom-node', | |
sender="Impact Pack", custom_node_url=custom_node_url, msg=msg) | |
except Exception: | |
print(msg) | |
print(f"[Impact Pack] ComfyUI-Manager is outdated. The custom node installation feature is not available.") | |
# author: Trung0246 ---> | |
class TautologyStr(str): | |
def __ne__(self, other): | |
return False | |
class ByPassTypeTuple(tuple): | |
def __getitem__(self, index): | |
if index > 0: | |
index = 0 | |
item = super().__getitem__(index) | |
if isinstance(item, str): | |
return TautologyStr(item) | |
return item | |
class NonListIterable: | |
def __init__(self, data): | |
self.data = data | |
def __getitem__(self, index): | |
return self.data[index] | |
def add_folder_path_and_extensions(folder_name, full_folder_paths, extensions): | |
# Iterate over the list of full folder paths | |
for full_folder_path in full_folder_paths: | |
# Use the provided function to add each model folder path | |
folder_paths.add_model_folder_path(folder_name, full_folder_path) | |
# Now handle the extensions. If the folder name already exists, update the extensions | |
if folder_name in folder_paths.folder_names_and_paths: | |
# Unpack the current paths and extensions | |
current_paths, current_extensions = folder_paths.folder_names_and_paths[folder_name] | |
# Update the extensions set with the new extensions | |
updated_extensions = current_extensions | extensions | |
# Reassign the updated tuple back to the dictionary | |
folder_paths.folder_names_and_paths[folder_name] = (current_paths, updated_extensions) | |
else: | |
# If the folder name was not present, add_model_folder_path would have added it with the last path | |
# Now we just need to update the set of extensions as it would be an empty set | |
# Also ensure that all paths are included (since add_model_folder_path adds only one path at a time) | |
folder_paths.folder_names_and_paths[folder_name] = (full_folder_paths, extensions) | |
# <--- | |
# wildcard trick is taken from pythongossss's | |
class AnyType(str): | |
def __ne__(self, __value: object) -> bool: | |
return False | |
any_typ = AnyType("*") | |