gartajackhats1985's picture
Upload 171 files
c37b2dd verified
import torch
import torchvision
import cv2
import numpy as np
import folder_paths
import nodes
from . import config
from PIL import Image
import comfy
class TensorBatchBuilder:
def __init__(self):
self.tensor = None
def concat(self, new_tensor):
if self.tensor is None:
self.tensor = new_tensor
else:
self.tensor = torch.concat((self.tensor, new_tensor), dim=0)
def tensor_convert_rgba(image, prefer_copy=True):
"""Assumes NHWC format tensor with 1, 3 or 4 channels."""
_tensor_check_image(image)
n_channel = image.shape[-1]
if n_channel == 4:
return image
if n_channel == 3:
alpha = torch.ones((*image.shape[:-1], 1))
return torch.cat((image, alpha), axis=-1)
if n_channel == 1:
if prefer_copy:
image = image.repeat(1, -1, -1, 4)
else:
image = image.expand(1, -1, -1, 3)
return image
# NOTE: Similar error message as in PIL, for easier googling :P
raise ValueError(f"illegal conversion (channels: {n_channel} -> 4)")
def tensor_convert_rgb(image, prefer_copy=True):
"""Assumes NHWC format tensor with 1, 3 or 4 channels."""
_tensor_check_image(image)
n_channel = image.shape[-1]
if n_channel == 3:
return image
if n_channel == 4:
image = image[..., :3]
if prefer_copy:
image = image.copy()
return image
if n_channel == 1:
if prefer_copy:
image = image.repeat(1, -1, -1, 4)
else:
image = image.expand(1, -1, -1, 3)
return image
# NOTE: Same error message as in PIL, for easier googling :P
raise ValueError(f"illegal conversion (channels: {n_channel} -> 3)")
def general_tensor_resize(image, w: int, h: int):
_tensor_check_image(image)
image = image.permute(0, 3, 1, 2)
image = torch.nn.functional.interpolate(image, size=(h, w), mode="bilinear")
image = image.permute(0, 2, 3, 1)
return image
# TODO: Sadly, we need LANCZOS
LANCZOS = (Image.Resampling.LANCZOS if hasattr(Image, 'Resampling') else Image.LANCZOS)
def tensor_resize(image, w: int, h: int):
_tensor_check_image(image)
if image.shape[3] >= 3:
scaled_images = TensorBatchBuilder()
for single_image in image:
single_image = single_image.unsqueeze(0)
single_pil = tensor2pil(single_image)
scaled_pil = single_pil.resize((w, h), resample=LANCZOS)
single_image = pil2tensor(scaled_pil)
scaled_images.concat(single_image)
return scaled_images.tensor
else:
return general_tensor_resize(image, w, h)
def tensor_get_size(image):
"""Mimicking `PIL.Image.size`"""
_tensor_check_image(image)
_, h, w, _ = image.shape
return (w, h)
def tensor2pil(image):
_tensor_check_image(image)
return Image.fromarray(np.clip(255. * image.cpu().numpy().squeeze(0), 0, 255).astype(np.uint8))
def pil2tensor(image):
return torch.from_numpy(np.array(image).astype(np.float32) / 255.0).unsqueeze(0)
def numpy2pil(image):
return Image.fromarray(np.clip(255. * image.squeeze(0), 0, 255).astype(np.uint8))
def to_pil(image):
if isinstance(image, Image.Image):
return image
if isinstance(image, torch.Tensor):
return tensor2pil(image)
if isinstance(image, np.ndarray):
return numpy2pil(image)
raise ValueError(f"Cannot convert {type(image)} to PIL.Image")
def to_tensor(image):
if isinstance(image, Image.Image):
return torch.from_numpy(np.array(image)) / 255.0
if isinstance(image, torch.Tensor):
return image
if isinstance(image, np.ndarray):
return torch.from_numpy(image)
raise ValueError(f"Cannot convert {type(image)} to torch.Tensor")
def to_numpy(image):
if isinstance(image, Image.Image):
return np.array(image)
if isinstance(image, torch.Tensor):
return image.numpy()
if isinstance(image, np.ndarray):
return image
raise ValueError(f"Cannot convert {type(image)} to numpy.ndarray")
def tensor_putalpha(image, mask):
_tensor_check_image(image)
_tensor_check_mask(mask)
image[..., -1] = mask[..., 0]
def _tensor_check_image(image):
if image.ndim != 4:
raise ValueError(f"Expected NHWC tensor, but found {image.ndim} dimensions")
if image.shape[-1] not in (1, 3, 4):
raise ValueError(f"Expected 1, 3 or 4 channels for image, but found {image.shape[-1]} channels")
return
def _tensor_check_mask(mask):
if mask.ndim != 4:
raise ValueError(f"Expected NHWC tensor, but found {mask.ndim} dimensions")
if mask.shape[-1] != 1:
raise ValueError(f"Expected 1 channel for mask, but found {mask.shape[-1]} channels")
return
def tensor_crop(image, crop_region):
_tensor_check_image(image)
return crop_ndarray4(image, crop_region)
def tensor2numpy(image):
_tensor_check_image(image)
return image.numpy()
def tensor_paste(image1, image2, left_top, mask):
"""Mask and image2 has to be the same size"""
_tensor_check_image(image1)
_tensor_check_image(image2)
_tensor_check_mask(mask)
if image2.shape[1:3] != mask.shape[1:3]:
mask = resize_mask(mask.squeeze(dim=3), image2.shape[1:3]).unsqueeze(dim=3)
# raise ValueError(f"Inconsistent size: Image ({image2.shape[1:3]}) != Mask ({mask.shape[1:3]})")
x, y = left_top
_, h1, w1, _ = image1.shape
_, h2, w2, _ = image2.shape
# calculate image patch size
w = min(w1, x + w2) - x
h = min(h1, y + h2) - y
# If the patch is out of bound, nothing to do!
if w <= 0 or h <= 0:
return
mask = mask[:, :h, :w, :]
image1[:, y:y+h, x:x+w, :] = (
(1 - mask) * image1[:, y:y+h, x:x+w, :] +
mask * image2[:, :h, :w, :]
)
return
def center_of_bbox(bbox):
w, h = bbox[2] - bbox[0], bbox[3] - bbox[1]
return bbox[0] + w/2, bbox[1] + h/2
def combine_masks(masks):
if len(masks) == 0:
return None
else:
initial_cv2_mask = np.array(masks[0][1])
combined_cv2_mask = initial_cv2_mask
for i in range(1, len(masks)):
cv2_mask = np.array(masks[i][1])
if combined_cv2_mask.shape == cv2_mask.shape:
combined_cv2_mask = cv2.bitwise_or(combined_cv2_mask, cv2_mask)
else:
# do nothing - incompatible mask
pass
mask = torch.from_numpy(combined_cv2_mask)
return mask
def combine_masks2(masks):
if len(masks) == 0:
return None
else:
initial_cv2_mask = np.array(masks[0]).astype(np.uint8)
combined_cv2_mask = initial_cv2_mask
for i in range(1, len(masks)):
cv2_mask = np.array(masks[i]).astype(np.uint8)
if combined_cv2_mask.shape == cv2_mask.shape:
combined_cv2_mask = cv2.bitwise_or(combined_cv2_mask, cv2_mask)
else:
# do nothing - incompatible mask
pass
mask = torch.from_numpy(combined_cv2_mask)
return mask
def bitwise_and_masks(mask1, mask2):
mask1 = mask1.cpu()
mask2 = mask2.cpu()
cv2_mask1 = np.array(mask1)
cv2_mask2 = np.array(mask2)
if cv2_mask1.shape == cv2_mask2.shape:
cv2_mask = cv2.bitwise_and(cv2_mask1, cv2_mask2)
return torch.from_numpy(cv2_mask)
else:
# do nothing - incompatible mask shape: mostly empty mask
return mask1
def to_binary_mask(mask, threshold=0):
mask = make_3d_mask(mask)
mask = mask.clone().cpu()
mask[mask > threshold] = 1.
mask[mask <= threshold] = 0.
return mask
def use_gpu_opencv():
return not config.get_config()['disable_gpu_opencv']
def dilate_mask(mask, dilation_factor, iter=1):
if dilation_factor == 0:
return make_2d_mask(mask)
mask = make_2d_mask(mask)
kernel = np.ones((abs(dilation_factor), abs(dilation_factor)), np.uint8)
if use_gpu_opencv():
mask = cv2.UMat(mask)
kernel = cv2.UMat(kernel)
if dilation_factor > 0:
result = cv2.dilate(mask, kernel, iter)
else:
result = cv2.erode(mask, kernel, iter)
if use_gpu_opencv():
return result.get()
else:
return result
def dilate_masks(segmasks, dilation_factor, iter=1):
if dilation_factor == 0:
return segmasks
dilated_masks = []
kernel = np.ones((abs(dilation_factor), abs(dilation_factor)), np.uint8)
if use_gpu_opencv():
kernel = cv2.UMat(kernel)
for i in range(len(segmasks)):
cv2_mask = segmasks[i][1]
if use_gpu_opencv():
cv2_mask = cv2.UMat(cv2_mask)
if dilation_factor > 0:
dilated_mask = cv2.dilate(cv2_mask, kernel, iter)
else:
dilated_mask = cv2.erode(cv2_mask, kernel, iter)
if use_gpu_opencv():
dilated_mask = dilated_mask.get()
item = (segmasks[i][0], dilated_mask, segmasks[i][2])
dilated_masks.append(item)
return dilated_masks
import torch.nn.functional as F
def feather_mask(mask, thickness):
mask = mask.permute(0, 3, 1, 2)
# Gaussian kernel for blurring
kernel_size = 2 * int(thickness) + 1
sigma = thickness / 3 # Adjust the sigma value as needed
blur_kernel = _gaussian_kernel(kernel_size, sigma).to(mask.device, mask.dtype)
# Apply blur to the mask
blurred_mask = F.conv2d(mask, blur_kernel.unsqueeze(0).unsqueeze(0), padding=thickness)
blurred_mask = blurred_mask.permute(0, 2, 3, 1)
return blurred_mask
def _gaussian_kernel(kernel_size, sigma):
# Generate a 1D Gaussian kernel
kernel = torch.exp(-(torch.arange(kernel_size) - kernel_size // 2)**2 / (2 * sigma**2))
return kernel / kernel.sum()
def tensor_gaussian_blur_mask(mask, kernel_size, sigma=10.0):
"""Return NHWC torch.Tenser from ndim == 2 or 4 `np.ndarray` or `torch.Tensor`"""
if isinstance(mask, np.ndarray):
mask = torch.from_numpy(mask)
if mask.ndim == 2:
mask = mask[None, ..., None]
elif mask.ndim == 3:
mask = mask[..., None]
_tensor_check_mask(mask)
if kernel_size <= 0:
return mask
kernel_size = kernel_size*2+1
shortest = min(mask.shape[1], mask.shape[2])
if shortest <= kernel_size:
kernel_size = int(shortest/2)
if kernel_size % 2 == 0:
kernel_size += 1
if kernel_size < 3:
return mask # skip feathering
prev_device = mask.device
device = comfy.model_management.get_torch_device()
mask.to(device)
# apply gaussian blur
mask = mask[:, None, ..., 0]
blurred_mask = torchvision.transforms.GaussianBlur(kernel_size=kernel_size, sigma=sigma)(mask)
blurred_mask = blurred_mask[:, 0, ..., None]
blurred_mask.to(prev_device)
return blurred_mask
def subtract_masks(mask1, mask2):
mask1 = mask1.cpu()
mask2 = mask2.cpu()
cv2_mask1 = np.array(mask1) * 255
cv2_mask2 = np.array(mask2) * 255
if cv2_mask1.shape == cv2_mask2.shape:
cv2_mask = cv2.subtract(cv2_mask1, cv2_mask2)
return torch.clamp(torch.from_numpy(cv2_mask) / 255.0, min=0, max=1)
else:
# do nothing - incompatible mask shape: mostly empty mask
return mask1
def add_masks(mask1, mask2):
mask1 = mask1.cpu()
mask2 = mask2.cpu()
cv2_mask1 = np.array(mask1) * 255
cv2_mask2 = np.array(mask2) * 255
if cv2_mask1.shape == cv2_mask2.shape:
cv2_mask = cv2.add(cv2_mask1, cv2_mask2)
return torch.clamp(torch.from_numpy(cv2_mask) / 255.0, min=0, max=1)
else:
# do nothing - incompatible mask shape: mostly empty mask
return mask1
def normalize_region(limit, startp, size):
if startp < 0:
new_endp = min(limit, size)
new_startp = 0
elif startp + size > limit:
new_startp = max(0, limit - size)
new_endp = limit
else:
new_startp = startp
new_endp = min(limit, startp+size)
return int(new_startp), int(new_endp)
def make_crop_region(w, h, bbox, crop_factor, crop_min_size=None):
x1 = bbox[0]
y1 = bbox[1]
x2 = bbox[2]
y2 = bbox[3]
bbox_w = x2 - x1
bbox_h = y2 - y1
crop_w = bbox_w * crop_factor
crop_h = bbox_h * crop_factor
if crop_min_size is not None:
crop_w = max(crop_min_size, crop_w)
crop_h = max(crop_min_size, crop_h)
kernel_x = x1 + bbox_w / 2
kernel_y = y1 + bbox_h / 2
new_x1 = int(kernel_x - crop_w / 2)
new_y1 = int(kernel_y - crop_h / 2)
# make sure position in (w,h)
new_x1, new_x2 = normalize_region(w, new_x1, crop_w)
new_y1, new_y2 = normalize_region(h, new_y1, crop_h)
return [new_x1, new_y1, new_x2, new_y2]
def crop_ndarray4(npimg, crop_region):
x1 = crop_region[0]
y1 = crop_region[1]
x2 = crop_region[2]
y2 = crop_region[3]
cropped = npimg[:, y1:y2, x1:x2, :]
return cropped
crop_tensor4 = crop_ndarray4
def crop_ndarray3(npimg, crop_region):
x1 = crop_region[0]
y1 = crop_region[1]
x2 = crop_region[2]
y2 = crop_region[3]
cropped = npimg[:, y1:y2, x1:x2]
return cropped
def crop_ndarray2(npimg, crop_region):
x1 = crop_region[0]
y1 = crop_region[1]
x2 = crop_region[2]
y2 = crop_region[3]
cropped = npimg[y1:y2, x1:x2]
return cropped
def crop_image(image, crop_region):
return crop_tensor4(image, crop_region)
def to_latent_image(pixels, vae):
x = pixels.shape[1]
y = pixels.shape[2]
if pixels.shape[1] != x or pixels.shape[2] != y:
pixels = pixels[:, :x, :y, :]
vae_encode = nodes.VAEEncode()
return vae_encode.encode(vae, pixels)[0]
def empty_pil_tensor(w=64, h=64):
return torch.zeros((1, h, w, 3), dtype=torch.float32)
def make_2d_mask(mask):
if len(mask.shape) == 4:
return mask.squeeze(0).squeeze(0)
elif len(mask.shape) == 3:
return mask.squeeze(0)
return mask
def make_3d_mask(mask):
if len(mask.shape) == 4:
return mask.squeeze(0)
elif len(mask.shape) == 2:
return mask.unsqueeze(0)
return mask
def make_4d_mask(mask):
if len(mask.shape) == 3:
return mask.unsqueeze(0)
elif len(mask.shape) == 2:
return mask.unsqueeze(0).unsqueeze(0)
return mask
def is_same_device(a, b):
a_device = torch.device(a) if isinstance(a, str) else a
b_device = torch.device(b) if isinstance(b, str) else b
return a_device.type == b_device.type and a_device.index == b_device.index
def collect_non_reroute_nodes(node_map, links, res, node_id):
if node_map[node_id]['type'] != 'Reroute' and node_map[node_id]['type'] != 'Reroute (rgthree)':
res.append(node_id)
else:
for link in node_map[node_id]['outputs'][0]['links']:
next_node_id = str(links[link][2])
collect_non_reroute_nodes(node_map, links, res, next_node_id)
from torchvision.transforms.functional import to_pil_image
def resize_mask(mask, size):
mask = make_4d_mask(mask)
resized_mask = torch.nn.functional.interpolate(mask, size=size, mode='bilinear', align_corners=False)
return resized_mask.squeeze(0)
def apply_mask_alpha_to_pil(decoded_pil, mask):
decoded_rgba = decoded_pil.convert('RGBA')
mask_pil = to_pil_image(mask)
decoded_rgba.putalpha(mask_pil)
return decoded_rgba
def flatten_mask(all_masks):
merged_mask = (all_masks[0] * 255).to(torch.uint8)
for mask in all_masks[1:]:
merged_mask |= (mask * 255).to(torch.uint8)
return merged_mask
def try_install_custom_node(custom_node_url, msg):
try:
import cm_global
cm_global.try_call(api='cm.try-install-custom-node',
sender="Impact Pack", custom_node_url=custom_node_url, msg=msg)
except Exception:
print(msg)
print(f"[Impact Pack] ComfyUI-Manager is outdated. The custom node installation feature is not available.")
# author: Trung0246 --->
class TautologyStr(str):
def __ne__(self, other):
return False
class ByPassTypeTuple(tuple):
def __getitem__(self, index):
if index > 0:
index = 0
item = super().__getitem__(index)
if isinstance(item, str):
return TautologyStr(item)
return item
class NonListIterable:
def __init__(self, data):
self.data = data
def __getitem__(self, index):
return self.data[index]
def add_folder_path_and_extensions(folder_name, full_folder_paths, extensions):
# Iterate over the list of full folder paths
for full_folder_path in full_folder_paths:
# Use the provided function to add each model folder path
folder_paths.add_model_folder_path(folder_name, full_folder_path)
# Now handle the extensions. If the folder name already exists, update the extensions
if folder_name in folder_paths.folder_names_and_paths:
# Unpack the current paths and extensions
current_paths, current_extensions = folder_paths.folder_names_and_paths[folder_name]
# Update the extensions set with the new extensions
updated_extensions = current_extensions | extensions
# Reassign the updated tuple back to the dictionary
folder_paths.folder_names_and_paths[folder_name] = (current_paths, updated_extensions)
else:
# If the folder name was not present, add_model_folder_path would have added it with the last path
# Now we just need to update the set of extensions as it would be an empty set
# Also ensure that all paths are included (since add_model_folder_path adds only one path at a time)
folder_paths.folder_names_and_paths[folder_name] = (full_folder_paths, extensions)
# <---
# wildcard trick is taken from pythongossss's
class AnyType(str):
def __ne__(self, __value: object) -> bool:
return False
any_typ = AnyType("*")