custom_nodes / comfyui_controlnet_aux /node_wrappers /pose_keypoint_postprocess.py
gartajackhats1985's picture
Upload 1830 files
07f408f verified
import folder_paths
import json
import os
import numpy as np
import cv2
from PIL import ImageColor
from einops import rearrange
import torch
import itertools
from ..src.custom_controlnet_aux.dwpose import draw_poses, draw_animalposes, decode_json_as_poses
"""
Format of POSE_KEYPOINT (AP10K keypoints):
[{
"version": "ap10k",
"animals": [
[[x1, y1, 1], [x2, y2, 1],..., [x17, y17, 1]],
[[x1, y1, 1], [x2, y2, 1],..., [x17, y17, 1]],
...
],
"canvas_height": 512,
"canvas_width": 768
},...]
Format of POSE_KEYPOINT (OpenPose keypoints):
[{
"people": [
{
'pose_keypoints_2d': [[x1, y1, 1], [x2, y2, 1],..., [x17, y17, 1]]
"face_keypoints_2d": [[x1, y1, 1], [x2, y2, 1],..., [x68, y68, 1]],
"hand_left_keypoints_2d": [[x1, y1, 1], [x2, y2, 1],..., [x21, y21, 1]],
"hand_right_keypoints_2d":[[x1, y1, 1], [x2, y2, 1],..., [x21, y21, 1]],
}
],
"canvas_height": canvas_height,
"canvas_width": canvas_width,
},...]
"""
class SavePoseKpsAsJsonFile:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"pose_kps": ("POSE_KEYPOINT",),
"filename_prefix": ("STRING", {"default": "PoseKeypoint"})
}
}
RETURN_TYPES = ()
FUNCTION = "save_pose_kps"
OUTPUT_NODE = True
CATEGORY = "ControlNet Preprocessors/Pose Keypoint Postprocess"
def __init__(self):
self.output_dir = folder_paths.get_output_directory()
self.type = "output"
self.prefix_append = ""
def save_pose_kps(self, pose_kps, filename_prefix):
filename_prefix += self.prefix_append
full_output_folder, filename, counter, subfolder, filename_prefix = \
folder_paths.get_save_image_path(filename_prefix, self.output_dir, pose_kps[0]["canvas_width"], pose_kps[0]["canvas_height"])
file = f"{filename}_{counter:05}.json"
with open(os.path.join(full_output_folder, file), 'w') as f:
json.dump(pose_kps , f)
return {}
#COCO-Wholebody doesn't have eyebrows as it inherits 68 keypoints format
#Perhaps eyebrows can be estimated tho
FACIAL_PARTS = ["skin", "left_eye", "right_eye", "nose", "upper_lip", "inner_mouth", "lower_lip"]
LAPA_COLORS = dict(
skin="rgb(0, 153, 255)",
left_eye="rgb(0, 204, 153)",
right_eye="rgb(255, 153, 0)",
nose="rgb(255, 102, 255)",
upper_lip="rgb(102, 0, 51)",
inner_mouth="rgb(255, 204, 255)",
lower_lip="rgb(255, 0, 102)"
)
#One-based index
def kps_idxs(start, end):
step = -1 if start > end else 1
return list(range(start-1, end+1-1, step))
#Source: https://www.researchgate.net/profile/Fabrizio-Falchi/publication/338048224/figure/fig1/AS:837860722741255@1576772971540/68-facial-landmarks.jpg
FACIAL_PART_RANGES = dict(
skin=kps_idxs(1, 17) + kps_idxs(27, 18),
nose=kps_idxs(28, 36),
left_eye=kps_idxs(37, 42),
right_eye=kps_idxs(43, 48),
upper_lip=kps_idxs(49, 55) + kps_idxs(65, 61),
lower_lip=kps_idxs(61, 68),
inner_mouth=kps_idxs(61, 65) + kps_idxs(55, 49)
)
def is_normalized(keypoints) -> bool:
point_normalized = [
0 <= np.abs(k[0]) <= 1 and 0 <= np.abs(k[1]) <= 1
for k in keypoints
if k is not None
]
if not point_normalized:
return False
return np.all(point_normalized)
class FacialPartColoringFromPoseKps:
@classmethod
def INPUT_TYPES(s):
input_types = {
"required": {"pose_kps": ("POSE_KEYPOINT",), "mode": (["point", "polygon"], {"default": "polygon"})}
}
for facial_part in FACIAL_PARTS:
input_types["required"][facial_part] = ("STRING", {"default": LAPA_COLORS[facial_part], "multiline": False})
return input_types
RETURN_TYPES = ("IMAGE",)
FUNCTION = "colorize"
CATEGORY = "ControlNet Preprocessors/Pose Keypoint Postprocess"
def colorize(self, pose_kps, mode, **facial_part_colors):
pose_frames = pose_kps
np_frames = [self.draw_kps(pose_frame, mode, **facial_part_colors) for pose_frame in pose_frames]
np_frames = np.stack(np_frames, axis=0)
return (torch.from_numpy(np_frames).float() / 255.,)
def draw_kps(self, pose_frame, mode, **facial_part_colors):
width, height = pose_frame["canvas_width"], pose_frame["canvas_height"]
canvas = np.zeros((height, width, 3), dtype=np.uint8)
for person, part_name in itertools.product(pose_frame["people"], FACIAL_PARTS):
n = len(person["face_keypoints_2d"]) // 3
facial_kps = rearrange(np.array(person["face_keypoints_2d"]), "(n c) -> n c", n=n, c=3)[:, :2]
if is_normalized(facial_kps):
facial_kps *= (width, height)
facial_kps = facial_kps.astype(np.int32)
part_color = ImageColor.getrgb(facial_part_colors[part_name])[:3]
part_contours = facial_kps[FACIAL_PART_RANGES[part_name], :]
if mode == "point":
for pt in part_contours:
cv2.circle(canvas, pt, radius=2, color=part_color, thickness=-1)
else:
cv2.fillPoly(canvas, pts=[part_contours], color=part_color)
return canvas
# https://raw.githubusercontent.com/CMU-Perceptual-Computing-Lab/openpose/master/.github/media/keypoints_pose_18.png
BODY_PART_INDEXES = {
"Head": (16, 14, 0, 15, 17),
"Neck": (0, 1),
"Shoulder": (2, 5),
"Torso": (2, 5, 8, 11),
"RArm": (2, 3),
"RForearm": (3, 4),
"LArm": (5, 6),
"LForearm": (6, 7),
"RThigh": (8, 9),
"RLeg": (9, 10),
"LThigh": (11, 12),
"LLeg": (12, 13)
}
BODY_PART_DEFAULT_W_H = {
"Head": "256, 256",
"Neck": "100, 100",
"Shoulder": '',
"Torso": "350, 450",
"RArm": "128, 256",
"RForearm": "128, 256",
"LArm": "128, 256",
"LForearm": "128, 256",
"RThigh": "128, 256",
"RLeg": "128, 256",
"LThigh": "128, 256",
"LLeg": "128, 256"
}
class SinglePersonProcess:
@classmethod
def sort_and_get_max_people(s, pose_kps):
for idx in range(len(pose_kps)):
pose_kps[idx]["people"] = sorted(pose_kps[idx]["people"], key=lambda person:person["pose_keypoints_2d"][0])
return pose_kps, max(len(frame["people"]) for frame in pose_kps)
def __init__(self, pose_kps, person_idx=0) -> None:
self.width, self.height = pose_kps[0]["canvas_width"], pose_kps[0]["canvas_height"]
self.poses = [
self.normalize(pose_frame["people"][person_idx]["pose_keypoints_2d"])
if person_idx < len(pose_frame["people"])
else None
for pose_frame in pose_kps
]
def normalize(self, pose_kps_2d):
n = len(pose_kps_2d) // 3
pose_kps_2d = rearrange(np.array(pose_kps_2d), "(n c) -> n c", n=n, c=3)
pose_kps_2d[np.argwhere(pose_kps_2d[:,2]==0), :] = np.iinfo(np.int32).max // 2 #Safe large value
pose_kps_2d = pose_kps_2d[:, :2]
if is_normalized(pose_kps_2d):
pose_kps_2d *= (self.width, self.height)
return pose_kps_2d
def get_xyxy_bboxes(self, part_name, bbox_size=(128, 256)):
width, height = bbox_size
xyxy_bboxes = {}
for idx, pose in enumerate(self.poses):
if pose is None:
xyxy_bboxes[idx] = (np.iinfo(np.int32).max // 2,) * 4
continue
pts = pose[BODY_PART_INDEXES[part_name], :]
#top_left = np.min(pts[:,0]), np.min(pts[:,1])
#bottom_right = np.max(pts[:,0]), np.max(pts[:,1])
#pad_width = np.maximum(width - (bottom_right[0]-top_left[0]), 0) / 2
#pad_height = np.maximum(height - (bottom_right[1]-top_left[1]), 0) / 2
#xyxy_bboxes.append((
# top_left[0] - pad_width, top_left[1] - pad_height,
# bottom_right[0] + pad_width, bottom_right[1] + pad_height,
#))
x_mid, y_mid = np.mean(pts[:, 0]), np.mean(pts[:, 1])
xyxy_bboxes[idx] = (
x_mid - width/2, y_mid - height/2,
x_mid + width/2, y_mid + height/2
)
return xyxy_bboxes
class UpperBodyTrackingFromPoseKps:
PART_NAMES = ["Head", "Neck", "Shoulder", "Torso", "RArm", "RForearm", "LArm", "LForearm"]
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"pose_kps": ("POSE_KEYPOINT",),
"id_include": ("STRING", {"default": '', "multiline": False}),
**{part_name + "_width_height": ("STRING", {"default": BODY_PART_DEFAULT_W_H[part_name], "multiline": False}) for part_name in s.PART_NAMES}
}
}
RETURN_TYPES = ("TRACKING", "STRING")
RETURN_NAMES = ("tracking", "prompt")
FUNCTION = "convert"
CATEGORY = "ControlNet Preprocessors/Pose Keypoint Postprocess"
def convert(self, pose_kps, id_include, **parts_width_height):
parts_width_height = {part_name.replace("_width_height", ''): value for part_name, value in parts_width_height.items()}
enabled_part_names = [part_name for part_name in self.PART_NAMES if len(parts_width_height[part_name].strip())]
tracked = {part_name: {} for part_name in enabled_part_names}
id_include = id_include.strip()
id_include = list(map(int, id_include.split(','))) if len(id_include) else []
prompt_string = ''
pose_kps, max_people = SinglePersonProcess.sort_and_get_max_people(pose_kps)
for person_idx in range(max_people):
if len(id_include) and person_idx not in id_include:
continue
processor = SinglePersonProcess(pose_kps, person_idx)
for part_name in enabled_part_names:
bbox_size = tuple(map(int, parts_width_height[part_name].split(',')))
part_bboxes = processor.get_xyxy_bboxes(part_name, bbox_size)
id_coordinates = {idx: part_bbox+(processor.width, processor.height) for idx, part_bbox in part_bboxes.items()}
tracked[part_name][person_idx] = id_coordinates
for class_name, class_data in tracked.items():
for class_id in class_data.keys():
class_id_str = str(class_id)
# Use the incoming prompt for each class name and ID
_class_name = class_name.replace('L', '').replace('R', '').lower()
prompt_string += f'"{class_id_str}.{class_name}": "({_class_name})",\n'
return (tracked, prompt_string)
def numpy2torch(np_image: np.ndarray) -> torch.Tensor:
""" [H, W, C] => [B=1, H, W, C]"""
return torch.from_numpy(np_image.astype(np.float32) / 255).unsqueeze(0)
class RenderPeopleKps:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"kps": ("POSE_KEYPOINT",),
"render_body": ("BOOLEAN", {"default": True}),
"render_hand": ("BOOLEAN", {"default": True}),
"render_face": ("BOOLEAN", {"default": True}),
}
}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "render"
CATEGORY = "ControlNet Preprocessors/Pose Keypoint Postprocess"
def render(self, kps, render_body, render_hand, render_face) -> tuple[np.ndarray]:
if isinstance(kps, list):
kps = kps[0]
poses, _, height, width = decode_json_as_poses(kps)
np_image = draw_poses(
poses,
height,
width,
render_body,
render_hand,
render_face,
)
return (numpy2torch(np_image),)
class RenderAnimalKps:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"kps": ("POSE_KEYPOINT",),
}
}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "render"
CATEGORY = "ControlNet Preprocessors/Pose Keypoint Postprocess"
def render(self, kps) -> tuple[np.ndarray]:
if isinstance(kps, list):
kps = kps[0]
_, poses, height, width = decode_json_as_poses(kps)
np_image = draw_animalposes(poses, height, width)
return (numpy2torch(np_image),)
NODE_CLASS_MAPPINGS = {
"SavePoseKpsAsJsonFile": SavePoseKpsAsJsonFile,
"FacialPartColoringFromPoseKps": FacialPartColoringFromPoseKps,
"UpperBodyTrackingFromPoseKps": UpperBodyTrackingFromPoseKps,
"RenderPeopleKps": RenderPeopleKps,
"RenderAnimalKps": RenderAnimalKps,
}
NODE_DISPLAY_NAME_MAPPINGS = {
"SavePoseKpsAsJsonFile": "Save Pose Keypoints",
"FacialPartColoringFromPoseKps": "Colorize Facial Parts from PoseKPS",
"UpperBodyTrackingFromPoseKps": "Upper Body Tracking From PoseKps (InstanceDiffusion)",
"RenderPeopleKps": "Render Pose JSON (Human)",
"RenderAnimalKps": "Render Pose JSON (Animal)",
}