gartajackhats1985's picture
Upload 1830 files
07f408f verified
import os
import numpy as np
import torch
from torch.nn import Module
from custom_manopth.smpl_handpca_wrapper_HAND_only import ready_arguments
from custom_manopth import rodrigues_layer, rotproj, rot6d
from custom_manopth.tensutils import (th_posemap_axisang, th_with_zeros, th_pack,
subtract_flat_id, make_list)
class ManoLayer(Module):
__constants__ = [
'use_pca', 'rot', 'ncomps', 'ncomps', 'kintree_parents', 'check',
'side', 'center_idx', 'joint_rot_mode'
]
def __init__(self,
center_idx=None,
flat_hand_mean=True,
ncomps=6,
side='right',
mano_root='mano/models',
use_pca=True,
root_rot_mode='axisang',
joint_rot_mode='axisang',
robust_rot=False):
"""
Args:
center_idx: index of center joint in our computations,
if -1 centers on estimate of palm as middle of base
of middle finger and wrist
flat_hand_mean: if True, (0, 0, 0, ...) pose coefficients match
flat hand, else match average hand pose
mano_root: path to MANO pkl files for left and right hand
ncomps: number of PCA components form pose space (<45)
side: 'right' or 'left'
use_pca: Use PCA decomposition for pose space.
joint_rot_mode: 'axisang' or 'rotmat', ignored if use_pca
"""
super().__init__()
self.center_idx = center_idx
self.robust_rot = robust_rot
if root_rot_mode == 'axisang':
self.rot = 3
else:
self.rot = 6
self.flat_hand_mean = flat_hand_mean
self.side = side
self.use_pca = use_pca
self.joint_rot_mode = joint_rot_mode
self.root_rot_mode = root_rot_mode
if use_pca:
self.ncomps = ncomps
else:
self.ncomps = 45
if side == 'right':
self.mano_path = os.path.join(mano_root, 'MANO_RIGHT.pkl')
elif side == 'left':
self.mano_path = os.path.join(mano_root, 'MANO_LEFT.pkl')
smpl_data = ready_arguments(self.mano_path)
hands_components = smpl_data['hands_components']
self.smpl_data = smpl_data
self.register_buffer('th_betas',
torch.Tensor(smpl_data['betas']).unsqueeze(0))
self.register_buffer('th_shapedirs',
torch.Tensor(smpl_data['shapedirs']))
self.register_buffer('th_posedirs',
torch.Tensor(smpl_data['posedirs']))
self.register_buffer(
'th_v_template',
torch.Tensor(smpl_data['v_template']).unsqueeze(0))
self.register_buffer(
'th_J_regressor',
torch.Tensor(np.array(smpl_data['J_regressor'].toarray())))
self.register_buffer('th_weights',
torch.Tensor(smpl_data['weights']))
self.register_buffer('th_faces',
torch.Tensor(smpl_data['f'].astype(np.int32)).long())
# Get hand mean
hands_mean = np.zeros(hands_components.shape[1]
) if flat_hand_mean else smpl_data['hands_mean']
hands_mean = hands_mean.copy()
th_hands_mean = torch.Tensor(hands_mean).unsqueeze(0)
if self.use_pca or self.joint_rot_mode == 'axisang':
# Save as axis-angle
self.register_buffer('th_hands_mean', th_hands_mean)
selected_components = hands_components[:ncomps]
self.register_buffer('th_comps', torch.Tensor(hands_components))
self.register_buffer('th_selected_comps',
torch.Tensor(selected_components))
else:
th_hands_mean_rotmat = rodrigues_layer.batch_rodrigues(
th_hands_mean.view(15, 3)).reshape(15, 3, 3)
self.register_buffer('th_hands_mean_rotmat', th_hands_mean_rotmat)
# Kinematic chain params
self.kintree_table = smpl_data['kintree_table']
parents = list(self.kintree_table[0].tolist())
self.kintree_parents = parents
def forward(self,
th_pose_coeffs,
th_betas=torch.zeros(1),
th_trans=torch.zeros(1),
root_palm=torch.Tensor([0]),
share_betas=torch.Tensor([0]),
):
"""
Args:
th_trans (Tensor (batch_size x ncomps)): if provided, applies trans to joints and vertices
th_betas (Tensor (batch_size x 10)): if provided, uses given shape parameters for hand shape
else centers on root joint (9th joint)
root_palm: return palm as hand root instead of wrist
"""
# if len(th_pose_coeffs) == 0:
# return th_pose_coeffs.new_empty(0), th_pose_coeffs.new_empty(0)
batch_size = th_pose_coeffs.shape[0]
# Get axis angle from PCA components and coefficients
if self.use_pca or self.joint_rot_mode == 'axisang':
# Remove global rot coeffs
th_hand_pose_coeffs = th_pose_coeffs[:, self.rot:self.rot +
self.ncomps]
if self.use_pca:
# PCA components --> axis angles
th_full_hand_pose = th_hand_pose_coeffs.mm(self.th_selected_comps)
else:
th_full_hand_pose = th_hand_pose_coeffs
# Concatenate back global rot
th_full_pose = torch.cat([
th_pose_coeffs[:, :self.rot],
self.th_hands_mean + th_full_hand_pose
], 1)
if self.root_rot_mode == 'axisang':
# compute rotation matrixes from axis-angle while skipping global rotation
th_pose_map, th_rot_map = th_posemap_axisang(th_full_pose)
root_rot = th_rot_map[:, :9].view(batch_size, 3, 3)
th_rot_map = th_rot_map[:, 9:]
th_pose_map = th_pose_map[:, 9:]
else:
# th_posemap offsets by 3, so add offset or 3 to get to self.rot=6
th_pose_map, th_rot_map = th_posemap_axisang(th_full_pose[:, 6:])
if self.robust_rot:
root_rot = rot6d.robust_compute_rotation_matrix_from_ortho6d(th_full_pose[:, :6])
else:
root_rot = rot6d.compute_rotation_matrix_from_ortho6d(th_full_pose[:, :6])
else:
assert th_pose_coeffs.dim() == 4, (
'When not self.use_pca, '
'th_pose_coeffs should have 4 dims, got {}'.format(
th_pose_coeffs.dim()))
assert th_pose_coeffs.shape[2:4] == (3, 3), (
'When not self.use_pca, th_pose_coeffs have 3x3 matrix for two'
'last dims, got {}'.format(th_pose_coeffs.shape[2:4]))
th_pose_rots = rotproj.batch_rotprojs(th_pose_coeffs)
th_rot_map = th_pose_rots[:, 1:].view(batch_size, -1)
th_pose_map = subtract_flat_id(th_rot_map)
root_rot = th_pose_rots[:, 0]
# Full axis angle representation with root joint
if th_betas is None or th_betas.numel() == 1:
th_v_shaped = torch.matmul(self.th_shapedirs,
self.th_betas.transpose(1, 0)).permute(
2, 0, 1) + self.th_v_template
th_j = torch.matmul(self.th_J_regressor, th_v_shaped).repeat(
batch_size, 1, 1)
else:
if share_betas:
th_betas = th_betas.mean(0, keepdim=True).expand(th_betas.shape[0], 10)
th_v_shaped = torch.matmul(self.th_shapedirs,
th_betas.transpose(1, 0)).permute(
2, 0, 1) + self.th_v_template
th_j = torch.matmul(self.th_J_regressor, th_v_shaped)
# th_pose_map should have shape 20x135
th_v_posed = th_v_shaped + torch.matmul(
self.th_posedirs, th_pose_map.transpose(0, 1)).permute(2, 0, 1)
# Final T pose with transformation done !
# Global rigid transformation
root_j = th_j[:, 0, :].contiguous().view(batch_size, 3, 1)
root_trans = th_with_zeros(torch.cat([root_rot, root_j], 2))
all_rots = th_rot_map.view(th_rot_map.shape[0], 15, 3, 3)
lev1_idxs = [1, 4, 7, 10, 13]
lev2_idxs = [2, 5, 8, 11, 14]
lev3_idxs = [3, 6, 9, 12, 15]
lev1_rots = all_rots[:, [idx - 1 for idx in lev1_idxs]]
lev2_rots = all_rots[:, [idx - 1 for idx in lev2_idxs]]
lev3_rots = all_rots[:, [idx - 1 for idx in lev3_idxs]]
lev1_j = th_j[:, lev1_idxs]
lev2_j = th_j[:, lev2_idxs]
lev3_j = th_j[:, lev3_idxs]
# From base to tips
# Get lev1 results
all_transforms = [root_trans.unsqueeze(1)]
lev1_j_rel = lev1_j - root_j.transpose(1, 2)
lev1_rel_transform_flt = th_with_zeros(torch.cat([lev1_rots, lev1_j_rel.unsqueeze(3)], 3).view(-1, 3, 4))
root_trans_flt = root_trans.unsqueeze(1).repeat(1, 5, 1, 1).view(root_trans.shape[0] * 5, 4, 4)
lev1_flt = torch.matmul(root_trans_flt, lev1_rel_transform_flt)
all_transforms.append(lev1_flt.view(all_rots.shape[0], 5, 4, 4))
# Get lev2 results
lev2_j_rel = lev2_j - lev1_j
lev2_rel_transform_flt = th_with_zeros(torch.cat([lev2_rots, lev2_j_rel.unsqueeze(3)], 3).view(-1, 3, 4))
lev2_flt = torch.matmul(lev1_flt, lev2_rel_transform_flt)
all_transforms.append(lev2_flt.view(all_rots.shape[0], 5, 4, 4))
# Get lev3 results
lev3_j_rel = lev3_j - lev2_j
lev3_rel_transform_flt = th_with_zeros(torch.cat([lev3_rots, lev3_j_rel.unsqueeze(3)], 3).view(-1, 3, 4))
lev3_flt = torch.matmul(lev2_flt, lev3_rel_transform_flt)
all_transforms.append(lev3_flt.view(all_rots.shape[0], 5, 4, 4))
reorder_idxs = [0, 1, 6, 11, 2, 7, 12, 3, 8, 13, 4, 9, 14, 5, 10, 15]
th_results = torch.cat(all_transforms, 1)[:, reorder_idxs]
th_results_global = th_results
joint_js = torch.cat([th_j, th_j.new_zeros(th_j.shape[0], 16, 1)], 2)
tmp2 = torch.matmul(th_results, joint_js.unsqueeze(3))
th_results2 = (th_results - torch.cat([tmp2.new_zeros(*tmp2.shape[:2], 4, 3), tmp2], 3)).permute(0, 2, 3, 1)
th_T = torch.matmul(th_results2, self.th_weights.transpose(0, 1))
th_rest_shape_h = torch.cat([
th_v_posed.transpose(2, 1),
torch.ones((batch_size, 1, th_v_posed.shape[1]),
dtype=th_T.dtype,
device=th_T.device),
], 1)
th_verts = (th_T * th_rest_shape_h.unsqueeze(1)).sum(2).transpose(2, 1)
th_verts = th_verts[:, :, :3]
th_jtr = th_results_global[:, :, :3, 3]
# In addition to MANO reference joints we sample vertices on each finger
# to serve as finger tips
if self.side == 'right':
tips = th_verts[:, [745, 317, 444, 556, 673]]
else:
tips = th_verts[:, [745, 317, 445, 556, 673]]
if bool(root_palm):
palm = (th_verts[:, 95] + th_verts[:, 22]).unsqueeze(1) / 2
th_jtr = torch.cat([palm, th_jtr[:, 1:]], 1)
th_jtr = torch.cat([th_jtr, tips], 1)
# Reorder joints to match visualization utilities
th_jtr = th_jtr[:, [0, 13, 14, 15, 16, 1, 2, 3, 17, 4, 5, 6, 18, 10, 11, 12, 19, 7, 8, 9, 20]]
if th_trans is None or bool(torch.norm(th_trans) == 0):
if self.center_idx is not None:
center_joint = th_jtr[:, self.center_idx].unsqueeze(1)
th_jtr = th_jtr - center_joint
th_verts = th_verts - center_joint
else:
th_jtr = th_jtr + th_trans.unsqueeze(1)
th_verts = th_verts + th_trans.unsqueeze(1)
# Scale to milimeters
th_verts = th_verts * 1000
th_jtr = th_jtr * 1000
return th_verts, th_jtr