Spaces:
Running
Running
dependencies = ["torch"] | |
import torch | |
from custom_midas_repo.midas.dpt_depth import DPTDepthModel | |
from custom_midas_repo.midas.midas_net import MidasNet | |
from custom_midas_repo.midas.midas_net_custom import MidasNet_small | |
def DPT_BEiT_L_512(pretrained=True, **kwargs): | |
""" # This docstring shows up in hub.help() | |
MiDaS DPT_BEiT_L_512 model for monocular depth estimation | |
pretrained (bool): load pretrained weights into model | |
""" | |
model = DPTDepthModel( | |
path=None, | |
backbone="beitl16_512", | |
non_negative=True, | |
) | |
if pretrained: | |
checkpoint = ( | |
"https://github.com/isl-org/MiDaS/releases/download/v3_1/dpt_beit_large_512.pt" | |
) | |
state_dict = torch.hub.load_state_dict_from_url( | |
checkpoint, map_location=torch.device('cpu'), progress=True, check_hash=True | |
) | |
model.load_state_dict(state_dict) | |
return model | |
def DPT_BEiT_L_384(pretrained=True, **kwargs): | |
""" # This docstring shows up in hub.help() | |
MiDaS DPT_BEiT_L_384 model for monocular depth estimation | |
pretrained (bool): load pretrained weights into model | |
""" | |
model = DPTDepthModel( | |
path=None, | |
backbone="beitl16_384", | |
non_negative=True, | |
) | |
if pretrained: | |
checkpoint = ( | |
"https://github.com/isl-org/MiDaS/releases/download/v3_1/dpt_beit_large_384.pt" | |
) | |
state_dict = torch.hub.load_state_dict_from_url( | |
checkpoint, map_location=torch.device('cpu'), progress=True, check_hash=True | |
) | |
model.load_state_dict(state_dict) | |
return model | |
def DPT_BEiT_B_384(pretrained=True, **kwargs): | |
""" # This docstring shows up in hub.help() | |
MiDaS DPT_BEiT_B_384 model for monocular depth estimation | |
pretrained (bool): load pretrained weights into model | |
""" | |
model = DPTDepthModel( | |
path=None, | |
backbone="beitb16_384", | |
non_negative=True, | |
) | |
if pretrained: | |
checkpoint = ( | |
"https://github.com/isl-org/MiDaS/releases/download/v3_1/dpt_beit_base_384.pt" | |
) | |
state_dict = torch.hub.load_state_dict_from_url( | |
checkpoint, map_location=torch.device('cpu'), progress=True, check_hash=True | |
) | |
model.load_state_dict(state_dict) | |
return model | |
def DPT_SwinV2_L_384(pretrained=True, **kwargs): | |
""" # This docstring shows up in hub.help() | |
MiDaS DPT_SwinV2_L_384 model for monocular depth estimation | |
pretrained (bool): load pretrained weights into model | |
""" | |
model = DPTDepthModel( | |
path=None, | |
backbone="swin2l24_384", | |
non_negative=True, | |
) | |
if pretrained: | |
checkpoint = ( | |
"https://github.com/isl-org/MiDaS/releases/download/v3_1/dpt_swin2_large_384.pt" | |
) | |
state_dict = torch.hub.load_state_dict_from_url( | |
checkpoint, map_location=torch.device('cpu'), progress=True, check_hash=True | |
) | |
model.load_state_dict(state_dict) | |
return model | |
def DPT_SwinV2_B_384(pretrained=True, **kwargs): | |
""" # This docstring shows up in hub.help() | |
MiDaS DPT_SwinV2_B_384 model for monocular depth estimation | |
pretrained (bool): load pretrained weights into model | |
""" | |
model = DPTDepthModel( | |
path=None, | |
backbone="swin2b24_384", | |
non_negative=True, | |
) | |
if pretrained: | |
checkpoint = ( | |
"https://github.com/isl-org/MiDaS/releases/download/v3_1/dpt_swin2_base_384.pt" | |
) | |
state_dict = torch.hub.load_state_dict_from_url( | |
checkpoint, map_location=torch.device('cpu'), progress=True, check_hash=True | |
) | |
model.load_state_dict(state_dict) | |
return model | |
def DPT_SwinV2_T_256(pretrained=True, **kwargs): | |
""" # This docstring shows up in hub.help() | |
MiDaS DPT_SwinV2_T_256 model for monocular depth estimation | |
pretrained (bool): load pretrained weights into model | |
""" | |
model = DPTDepthModel( | |
path=None, | |
backbone="swin2t16_256", | |
non_negative=True, | |
) | |
if pretrained: | |
checkpoint = ( | |
"https://github.com/isl-org/MiDaS/releases/download/v3_1/dpt_swin2_tiny_256.pt" | |
) | |
state_dict = torch.hub.load_state_dict_from_url( | |
checkpoint, map_location=torch.device('cpu'), progress=True, check_hash=True | |
) | |
model.load_state_dict(state_dict) | |
return model | |
def DPT_Swin_L_384(pretrained=True, **kwargs): | |
""" # This docstring shows up in hub.help() | |
MiDaS DPT_Swin_L_384 model for monocular depth estimation | |
pretrained (bool): load pretrained weights into model | |
""" | |
model = DPTDepthModel( | |
path=None, | |
backbone="swinl12_384", | |
non_negative=True, | |
) | |
if pretrained: | |
checkpoint = ( | |
"https://github.com/isl-org/MiDaS/releases/download/v3_1/dpt_swin_large_384.pt" | |
) | |
state_dict = torch.hub.load_state_dict_from_url( | |
checkpoint, map_location=torch.device('cpu'), progress=True, check_hash=True | |
) | |
model.load_state_dict(state_dict) | |
return model | |
def DPT_Next_ViT_L_384(pretrained=True, **kwargs): | |
""" # This docstring shows up in hub.help() | |
MiDaS DPT_Next_ViT_L_384 model for monocular depth estimation | |
pretrained (bool): load pretrained weights into model | |
""" | |
model = DPTDepthModel( | |
path=None, | |
backbone="next_vit_large_6m", | |
non_negative=True, | |
) | |
if pretrained: | |
checkpoint = ( | |
"https://github.com/isl-org/MiDaS/releases/download/v3_1/dpt_next_vit_large_384.pt" | |
) | |
state_dict = torch.hub.load_state_dict_from_url( | |
checkpoint, map_location=torch.device('cpu'), progress=True, check_hash=True | |
) | |
model.load_state_dict(state_dict) | |
return model | |
def DPT_LeViT_224(pretrained=True, **kwargs): | |
""" # This docstring shows up in hub.help() | |
MiDaS DPT_LeViT_224 model for monocular depth estimation | |
pretrained (bool): load pretrained weights into model | |
""" | |
model = DPTDepthModel( | |
path=None, | |
backbone="levit_384", | |
non_negative=True, | |
head_features_1=64, | |
head_features_2=8, | |
) | |
if pretrained: | |
checkpoint = ( | |
"https://github.com/isl-org/MiDaS/releases/download/v3_1/dpt_levit_224.pt" | |
) | |
state_dict = torch.hub.load_state_dict_from_url( | |
checkpoint, map_location=torch.device('cpu'), progress=True, check_hash=True | |
) | |
model.load_state_dict(state_dict) | |
return model | |
def DPT_Large(pretrained=True, **kwargs): | |
""" # This docstring shows up in hub.help() | |
MiDaS DPT-Large model for monocular depth estimation | |
pretrained (bool): load pretrained weights into model | |
""" | |
model = DPTDepthModel( | |
path=None, | |
backbone="vitl16_384", | |
non_negative=True, | |
) | |
if pretrained: | |
checkpoint = ( | |
"https://github.com/isl-org/MiDaS/releases/download/v3/dpt_large_384.pt" | |
) | |
state_dict = torch.hub.load_state_dict_from_url( | |
checkpoint, map_location=torch.device('cpu'), progress=True, check_hash=True | |
) | |
model.load_state_dict(state_dict) | |
return model | |
def DPT_Hybrid(pretrained=True, **kwargs): | |
""" # This docstring shows up in hub.help() | |
MiDaS DPT-Hybrid model for monocular depth estimation | |
pretrained (bool): load pretrained weights into model | |
""" | |
model = DPTDepthModel( | |
path=None, | |
backbone="vitb_rn50_384", | |
non_negative=True, | |
) | |
if pretrained: | |
checkpoint = ( | |
"https://github.com/isl-org/MiDaS/releases/download/v3/dpt_hybrid_384.pt" | |
) | |
state_dict = torch.hub.load_state_dict_from_url( | |
checkpoint, map_location=torch.device('cpu'), progress=True, check_hash=True | |
) | |
model.load_state_dict(state_dict) | |
return model | |
def MiDaS(pretrained=True, **kwargs): | |
""" # This docstring shows up in hub.help() | |
MiDaS v2.1 model for monocular depth estimation | |
pretrained (bool): load pretrained weights into model | |
""" | |
model = MidasNet() | |
if pretrained: | |
checkpoint = ( | |
"https://github.com/isl-org/MiDaS/releases/download/v2_1/midas_v21_384.pt" | |
) | |
state_dict = torch.hub.load_state_dict_from_url( | |
checkpoint, map_location=torch.device('cpu'), progress=True, check_hash=True | |
) | |
model.load_state_dict(state_dict) | |
return model | |
def MiDaS_small(pretrained=True, **kwargs): | |
""" # This docstring shows up in hub.help() | |
MiDaS v2.1 small model for monocular depth estimation on resource-constrained devices | |
pretrained (bool): load pretrained weights into model | |
""" | |
model = MidasNet_small(None, features=64, backbone="efficientnet_lite3", exportable=True, non_negative=True, blocks={'expand': True}) | |
if pretrained: | |
checkpoint = ( | |
"https://github.com/isl-org/MiDaS/releases/download/v2_1/midas_v21_small_256.pt" | |
) | |
state_dict = torch.hub.load_state_dict_from_url( | |
checkpoint, map_location=torch.device('cpu'), progress=True, check_hash=True | |
) | |
model.load_state_dict(state_dict) | |
return model | |
def transforms(): | |
import cv2 | |
from torchvision.transforms import Compose | |
from custom_midas_repo.midas.transforms import Resize, NormalizeImage, PrepareForNet | |
from custom_midas_repo.midas import transforms | |
transforms.default_transform = Compose( | |
[ | |
lambda img: {"image": img / 255.0}, | |
Resize( | |
384, | |
384, | |
resize_target=None, | |
keep_aspect_ratio=True, | |
ensure_multiple_of=32, | |
resize_method="upper_bound", | |
image_interpolation_method=cv2.INTER_CUBIC, | |
), | |
NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), | |
PrepareForNet(), | |
lambda sample: torch.from_numpy(sample["image"]).unsqueeze(0), | |
] | |
) | |
transforms.small_transform = Compose( | |
[ | |
lambda img: {"image": img / 255.0}, | |
Resize( | |
256, | |
256, | |
resize_target=None, | |
keep_aspect_ratio=True, | |
ensure_multiple_of=32, | |
resize_method="upper_bound", | |
image_interpolation_method=cv2.INTER_CUBIC, | |
), | |
NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), | |
PrepareForNet(), | |
lambda sample: torch.from_numpy(sample["image"]).unsqueeze(0), | |
] | |
) | |
transforms.dpt_transform = Compose( | |
[ | |
lambda img: {"image": img / 255.0}, | |
Resize( | |
384, | |
384, | |
resize_target=None, | |
keep_aspect_ratio=True, | |
ensure_multiple_of=32, | |
resize_method="minimal", | |
image_interpolation_method=cv2.INTER_CUBIC, | |
), | |
NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]), | |
PrepareForNet(), | |
lambda sample: torch.from_numpy(sample["image"]).unsqueeze(0), | |
] | |
) | |
transforms.beit512_transform = Compose( | |
[ | |
lambda img: {"image": img / 255.0}, | |
Resize( | |
512, | |
512, | |
resize_target=None, | |
keep_aspect_ratio=True, | |
ensure_multiple_of=32, | |
resize_method="minimal", | |
image_interpolation_method=cv2.INTER_CUBIC, | |
), | |
NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]), | |
PrepareForNet(), | |
lambda sample: torch.from_numpy(sample["image"]).unsqueeze(0), | |
] | |
) | |
transforms.swin384_transform = Compose( | |
[ | |
lambda img: {"image": img / 255.0}, | |
Resize( | |
384, | |
384, | |
resize_target=None, | |
keep_aspect_ratio=False, | |
ensure_multiple_of=32, | |
resize_method="minimal", | |
image_interpolation_method=cv2.INTER_CUBIC, | |
), | |
NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]), | |
PrepareForNet(), | |
lambda sample: torch.from_numpy(sample["image"]).unsqueeze(0), | |
] | |
) | |
transforms.swin256_transform = Compose( | |
[ | |
lambda img: {"image": img / 255.0}, | |
Resize( | |
256, | |
256, | |
resize_target=None, | |
keep_aspect_ratio=False, | |
ensure_multiple_of=32, | |
resize_method="minimal", | |
image_interpolation_method=cv2.INTER_CUBIC, | |
), | |
NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]), | |
PrepareForNet(), | |
lambda sample: torch.from_numpy(sample["image"]).unsqueeze(0), | |
] | |
) | |
transforms.levit_transform = Compose( | |
[ | |
lambda img: {"image": img / 255.0}, | |
Resize( | |
224, | |
224, | |
resize_target=None, | |
keep_aspect_ratio=False, | |
ensure_multiple_of=32, | |
resize_method="minimal", | |
image_interpolation_method=cv2.INTER_CUBIC, | |
), | |
NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]), | |
PrepareForNet(), | |
lambda sample: torch.from_numpy(sample["image"]).unsqueeze(0), | |
] | |
) | |
return transforms | |