gaspar-avit's picture
Upload 2 files
65ccb73
raw
history blame
6.46 kB
## Alternative movie poster generator
import streamlit as st
import pandas as pd
import numpy as np
import json
import requests
import os
from streamlit import session_state as session
from datetime import time, datetime
from zipfile import ZipFile
from sentence_transformers import SentenceTransformer
from diffusers import DiffusionPipeline
from htbuilder import HtmlElement, div, ul, li, br, hr, a, p, img, styles, classes, fonts
from htbuilder.units import percent, px
from htbuilder.funcs import rgba, rgb
###############################
## --- GLOBAL VARIABLES ---- ##
###############################
IS_MODEL_LOADED = False
PATH_JSON = '/home/user/app/.kaggle/kaggle.json'
# Environment variables to authenticate Kaggle account
os.environ['KAGGLE_USERNAME'] = st.secrets['username']
os.environ['KAGGLE_KEY'] = st.secrets['key']
os.environ['KAGGLE_CONFIG_DIR'] = PATH_JSON
from kaggle.api.kaggle_api_extended import KaggleApi
###############################
## ------- FUNCTIONS ------- ##
###############################
def link(link, text, **style):
return a(_href=link, _target="_blank", style=styles(**style))(text)
def image(src_as_string, **style):
return img(src=src_as_string, style=styles(**style))
def layout(*args):
style = """
<style>
# MainMenu {visibility: hidden;}
footer {visibility: hidden;}
.stApp { bottom: 105px; }
</style>
"""
style_div = styles(
position="fixed",
left=0,
bottom=0,
margin=px(0, 0, 0, 0),
width=percent(100),
color="black",
text_align="center",
height="auto",
opacity=1
)
style_hr = styles(
display="block",
margin=px(8, 8, "auto", "auto"),
border_style="inset",
border_width=px(2)
)
body = p()
foot = div(
style=style_div
)(
hr(
style=style_hr
),
body
)
st.markdown(style, unsafe_allow_html=True)
for arg in args:
if isinstance(arg, str):
body(arg)
elif isinstance(arg, HtmlElement):
body(arg)
st.markdown(str(foot), unsafe_allow_html=True)
def footer():
myargs = [
"Made in ",
image('https://avatars3.githubusercontent.com/u/45109972?s=400&v=4',
width=px(25), height=px(25)),
" with ❤️ by ",
link("https://www.linkedin.com/in/gaspar-avit/", "Gaspar Avit"),
]
layout(*myargs)
def authenticate_kaggle():
# Connect to kaggle API
if not os.path.exists(PATH_JSON):
api_token = {"username":st.secrets['username'],"key":st.secrets['key']}
with open(PATH_JSON, 'w') as file:
json.dump(api_token, file)
# Activate Kaggle API
api = KaggleApi()
api.authenticate()
try:
api.authenticate()
except:
with open('/home/appuser/.kaggle/kaggle.json', 'w') as file:
json.dump(api_token, file)
api.authenticate()
@st.experimental_memo(persist=True, show_spinner=False, suppress_st_warning=True)
def load_dataset():
"""
Load Dataset from Kaggle
-return: dataframe containing dataset
"""
# Connect to kaggle API
authenticate_kaggle()
# Downloading Movies dataset
api.dataset_download_file('rounakbanik/the-movies-dataset', 'movies_metadata.csv')
# Extract data
zf = ZipFile('movies_metadata.csv.zip')
zf.extractall()
zf.close()
# Create dataframe
data = pd.read_csv('movies_metadata.csv', low_memory=False)
return data
@st.cache(persist=True, show_spinner=False, allow_output_mutation=True, suppress_st_warning=True)
def load_model():
model = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5")
IS_MODEL_LOADED = True
return model
#return DiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4")
#return DiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-2")
def query_summarization(text):
"""
Get summarization from HuggingFace Inference API
-param text: text to be summarized
-return: summarized text
"""
API_URL = "https://api-inference.huggingface.co/models/facebook/bart-large-cnn"
headers = {"Authorization": f"Bearer {st.secrets['hf_token']}"}
payload = {"inputs": f"{text}",}
response = requests.request("POST", API_URL, headers=headers, json=payload).json()
return response[0].get('summary_text')
def generate_poster(movie_data):
"""
Function for recommending movies
-param movie_data: metadata of movie selected by user
-return: image of generated alternative poster
"""
# Get summarization of movie synopsis
with st.spinner("Please wait while the synopsis is being summarized..."):
synopsis_sum = query_summarization(movie_data.overview.values[0])
st.text("")
st.text("")
st.text(synopsis_sum)
# Load text-to-image model
if not IS_MODEL_LOADED:
with st.spinner("Loading Text to Image model..."):
pipeline = load_model()
# Get image based on synopsis
poster_image = pipeline(synopsis_sum).images[0]
st.image(poster_image, caption=movie_data.title)
return poster_image
# ------------------------------------------------------- #
###############################
## --------- MAIN ---------- ##
###############################
if __name__ == "__main__":
# Initialize image variable
image = None
## Create dataset
data = load_dataset()
## --- Page config --- ##
# Set page title
st.title("""
Alternative Movie Poster Generator :film_frames:
This is a movie poster generator based on movie's synopsis :sunglasses:
Just select the title of a movie to generate an alternative poster.
""")
## Set page footer
footer()
## ------------------- ##
st.text("")
st.text("")
st.text("")
st.text("")
session.selected_movie = st.selectbox(label="Select a movie to generate alternative poster", options=data.title)
st.text("")
st.text("")
buffer1, col1, buffer2 = st.columns([1.3, 1, 1])
is_clicked = col1.button(label="Generate poster!")
if is_clicked:
image = generate_poster(data[data.title==session.selected_movie])
st.text("")
st.text("")
st.text("")
st.text("")
if image is not None:
st.image(image, caption=session.selected_movie.title.values[0])