FLUXllama / app.py
nyanko7's picture
Create app.py
915f4ae verified
raw
history blame
33.3 kB
import os
from dataclasses import dataclass
import gradio as gr
import torch
from PIL import Image
from torchvision import transforms
from dataclasses import dataclass
import math
from typing import Callable
from tqdm import tqdm
import bitsandbytes as bnb
from bitsandbytes.nn.modules import Params4bit, QuantState
import torch
import random
from einops import rearrange, repeat
from diffusers import AutoencoderKL
from torch import Tensor, nn
from transformers import CLIPTextModel, CLIPTokenizer
from transformers import T5EncoderModel, T5Tokenizer
from safetensors.torch import load_file
from optimum.quanto import freeze, qfloat8, quantize
# ---------------- Encoders ----------------
class HFEmbedder(nn.Module):
def __init__(self, version: str, max_length: int, **hf_kwargs):
super().__init__()
self.is_clip = version.startswith("openai")
self.max_length = max_length
self.output_key = "pooler_output" if self.is_clip else "last_hidden_state"
if self.is_clip:
self.tokenizer: CLIPTokenizer = CLIPTokenizer.from_pretrained(version, max_length=max_length)
self.hf_module: CLIPTextModel = CLIPTextModel.from_pretrained(version, **hf_kwargs)
else:
self.tokenizer: T5Tokenizer = T5Tokenizer.from_pretrained(version, max_length=max_length)
self.hf_module: T5EncoderModel = T5EncoderModel.from_pretrained(version, **hf_kwargs)
self.hf_module = self.hf_module.eval().requires_grad_(False)
def forward(self, text: list[str]) -> Tensor:
batch_encoding = self.tokenizer(
text,
truncation=True,
max_length=self.max_length,
return_length=False,
return_overflowing_tokens=False,
padding="max_length",
return_tensors="pt",
)
outputs = self.hf_module(
input_ids=batch_encoding["input_ids"].to(self.hf_module.device),
attention_mask=None,
output_hidden_states=False,
)
return outputs[self.output_key]
device = "cuda"
t5 = HFEmbedder("google/t5-v1_1-xxl", max_length=512, torch_dtype=torch.bfloat16).to(device)
clip = HFEmbedder("openai/clip-vit-large-patch14", max_length=77, torch_dtype=torch.bfloat16).to(device)
ae = AutoencoderKL.from_pretrained("black-forest-labs/FLUX.1-dev", subfolder="vae", torch_dtype=torch.bfloat16).to(device)
quantize(t5, weights=qfloat8)
freeze(t5)
# ---------------- NF4 ----------------
def functional_linear_4bits(x, weight, bias):
out = bnb.matmul_4bit(x, weight.t(), bias=bias, quant_state=weight.quant_state)
out = out.to(x)
return out
def copy_quant_state(state: QuantState, device: torch.device = None) -> QuantState:
if state is None:
return None
device = device or state.absmax.device
state2 = (
QuantState(
absmax=state.state2.absmax.to(device),
shape=state.state2.shape,
code=state.state2.code.to(device),
blocksize=state.state2.blocksize,
quant_type=state.state2.quant_type,
dtype=state.state2.dtype,
)
if state.nested
else None
)
return QuantState(
absmax=state.absmax.to(device),
shape=state.shape,
code=state.code.to(device),
blocksize=state.blocksize,
quant_type=state.quant_type,
dtype=state.dtype,
offset=state.offset.to(device) if state.nested else None,
state2=state2,
)
class ForgeParams4bit(Params4bit):
def to(self, *args, **kwargs):
device, dtype, non_blocking, convert_to_format = torch._C._nn._parse_to(*args, **kwargs)
if device is not None and device.type == "cuda" and not self.bnb_quantized:
return self._quantize(device)
else:
n = ForgeParams4bit(
torch.nn.Parameter.to(self, device=device, dtype=dtype, non_blocking=non_blocking),
requires_grad=self.requires_grad,
quant_state=copy_quant_state(self.quant_state, device),
blocksize=self.blocksize,
compress_statistics=self.compress_statistics,
quant_type=self.quant_type,
quant_storage=self.quant_storage,
bnb_quantized=self.bnb_quantized,
module=self.module
)
self.module.quant_state = n.quant_state
self.data = n.data
self.quant_state = n.quant_state
return n
class ForgeLoader4Bit(torch.nn.Module):
def __init__(self, *, device, dtype, quant_type, **kwargs):
super().__init__()
self.dummy = torch.nn.Parameter(torch.empty(1, device=device, dtype=dtype))
self.weight = None
self.quant_state = None
self.bias = None
self.quant_type = quant_type
def _save_to_state_dict(self, destination, prefix, keep_vars):
super()._save_to_state_dict(destination, prefix, keep_vars)
quant_state = getattr(self.weight, "quant_state", None)
if quant_state is not None:
for k, v in quant_state.as_dict(packed=True).items():
destination[prefix + "weight." + k] = v if keep_vars else v.detach()
return
def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs):
quant_state_keys = {k[len(prefix + "weight."):] for k in state_dict.keys() if k.startswith(prefix + "weight.")}
if any('bitsandbytes' in k for k in quant_state_keys):
quant_state_dict = {k: state_dict[prefix + "weight." + k] for k in quant_state_keys}
self.weight = ForgeParams4bit.from_prequantized(
data=state_dict[prefix + 'weight'],
quantized_stats=quant_state_dict,
requires_grad=False,
device=self.dummy.device,
module=self
)
self.quant_state = self.weight.quant_state
if prefix + 'bias' in state_dict:
self.bias = torch.nn.Parameter(state_dict[prefix + 'bias'].to(self.dummy))
del self.dummy
elif hasattr(self, 'dummy'):
if prefix + 'weight' in state_dict:
self.weight = ForgeParams4bit(
state_dict[prefix + 'weight'].to(self.dummy),
requires_grad=False,
compress_statistics=True,
quant_type=self.quant_type,
quant_storage=torch.uint8,
module=self,
)
self.quant_state = self.weight.quant_state
if prefix + 'bias' in state_dict:
self.bias = torch.nn.Parameter(state_dict[prefix + 'bias'].to(self.dummy))
del self.dummy
else:
super()._load_from_state_dict(state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs)
class Linear(ForgeLoader4Bit):
def __init__(self, *args, device=None, dtype=None, **kwargs):
super().__init__(device=device, dtype=dtype, quant_type='nf4')
def forward(self, x):
self.weight.quant_state = self.quant_state
if self.bias is not None and self.bias.dtype != x.dtype:
# Maybe this can also be set to all non-bnb ops since the cost is very low.
# And it only invokes one time, and most linear does not have bias
self.bias.data = self.bias.data.to(x.dtype)
return functional_linear_4bits(x, self.weight, self.bias)
nn.Linear = Linear
# ---------------- Model ----------------
def attention(q: Tensor, k: Tensor, v: Tensor, pe: Tensor) -> Tensor:
q, k = apply_rope(q, k, pe)
x = torch.nn.functional.scaled_dot_product_attention(q, k, v)
x = rearrange(x, "B H L D -> B L (H D)")
return x
def rope(pos: Tensor, dim: int, theta: int) -> Tensor:
assert dim % 2 == 0
scale = torch.arange(0, dim, 2, dtype=torch.float64, device=pos.device) / dim
omega = 1.0 / (theta**scale)
out = torch.einsum("...n,d->...nd", pos, omega)
out = torch.stack([torch.cos(out), -torch.sin(out), torch.sin(out), torch.cos(out)], dim=-1)
out = rearrange(out, "b n d (i j) -> b n d i j", i=2, j=2)
return out.float()
def apply_rope(xq: Tensor, xk: Tensor, freqs_cis: Tensor) -> tuple[Tensor, Tensor]:
xq_ = xq.float().reshape(*xq.shape[:-1], -1, 1, 2)
xk_ = xk.float().reshape(*xk.shape[:-1], -1, 1, 2)
xq_out = freqs_cis[..., 0] * xq_[..., 0] + freqs_cis[..., 1] * xq_[..., 1]
xk_out = freqs_cis[..., 0] * xk_[..., 0] + freqs_cis[..., 1] * xk_[..., 1]
return xq_out.reshape(*xq.shape).type_as(xq), xk_out.reshape(*xk.shape).type_as(xk)
class EmbedND(nn.Module):
def __init__(self, dim: int, theta: int, axes_dim: list[int]):
super().__init__()
self.dim = dim
self.theta = theta
self.axes_dim = axes_dim
def forward(self, ids: Tensor) -> Tensor:
n_axes = ids.shape[-1]
emb = torch.cat(
[rope(ids[..., i], self.axes_dim[i], self.theta) for i in range(n_axes)],
dim=-3,
)
return emb.unsqueeze(1)
def timestep_embedding(t: Tensor, dim, max_period=10000, time_factor: float = 1000.0):
"""
Create sinusoidal timestep embeddings.
:param t: a 1-D Tensor of N indices, one per batch element.
These may be fractional.
:param dim: the dimension of the output.
:param max_period: controls the minimum frequency of the embeddings.
:return: an (N, D) Tensor of positional embeddings.
"""
t = time_factor * t
half = dim // 2
freqs = torch.exp(-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half).to(
t.device
)
args = t[:, None].float() * freqs[None]
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
if dim % 2:
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
if torch.is_floating_point(t):
embedding = embedding.to(t)
return embedding
class MLPEmbedder(nn.Module):
def __init__(self, in_dim: int, hidden_dim: int):
super().__init__()
self.in_layer = nn.Linear(in_dim, hidden_dim, bias=True)
self.silu = nn.SiLU()
self.out_layer = nn.Linear(hidden_dim, hidden_dim, bias=True)
def forward(self, x: Tensor) -> Tensor:
return self.out_layer(self.silu(self.in_layer(x)))
class RMSNorm(torch.nn.Module):
def __init__(self, dim: int):
super().__init__()
self.scale = nn.Parameter(torch.ones(dim))
def forward(self, x: Tensor):
x_dtype = x.dtype
x = x.float()
rrms = torch.rsqrt(torch.mean(x**2, dim=-1, keepdim=True) + 1e-6)
return (x * rrms).to(dtype=x_dtype) * self.scale
class QKNorm(torch.nn.Module):
def __init__(self, dim: int):
super().__init__()
self.query_norm = RMSNorm(dim)
self.key_norm = RMSNorm(dim)
def forward(self, q: Tensor, k: Tensor, v: Tensor) -> tuple[Tensor, Tensor]:
q = self.query_norm(q)
k = self.key_norm(k)
return q.to(v), k.to(v)
class SelfAttention(nn.Module):
def __init__(self, dim: int, num_heads: int = 8, qkv_bias: bool = False):
super().__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.norm = QKNorm(head_dim)
self.proj = nn.Linear(dim, dim)
def forward(self, x: Tensor, pe: Tensor) -> Tensor:
qkv = self.qkv(x)
q, k, v = rearrange(qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads)
q, k = self.norm(q, k, v)
x = attention(q, k, v, pe=pe)
x = self.proj(x)
return x
@dataclass
class ModulationOut:
shift: Tensor
scale: Tensor
gate: Tensor
class Modulation(nn.Module):
def __init__(self, dim: int, double: bool):
super().__init__()
self.is_double = double
self.multiplier = 6 if double else 3
self.lin = nn.Linear(dim, self.multiplier * dim, bias=True)
def forward(self, vec: Tensor) -> tuple[ModulationOut, ModulationOut | None]:
out = self.lin(nn.functional.silu(vec))[:, None, :].chunk(self.multiplier, dim=-1)
return (
ModulationOut(*out[:3]),
ModulationOut(*out[3:]) if self.is_double else None,
)
class DoubleStreamBlock(nn.Module):
def __init__(self, hidden_size: int, num_heads: int, mlp_ratio: float, qkv_bias: bool = False):
super().__init__()
mlp_hidden_dim = int(hidden_size * mlp_ratio)
self.num_heads = num_heads
self.hidden_size = hidden_size
self.img_mod = Modulation(hidden_size, double=True)
self.img_norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.img_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias)
self.img_norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.img_mlp = nn.Sequential(
nn.Linear(hidden_size, mlp_hidden_dim, bias=True),
nn.GELU(approximate="tanh"),
nn.Linear(mlp_hidden_dim, hidden_size, bias=True),
)
self.txt_mod = Modulation(hidden_size, double=True)
self.txt_norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.txt_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias)
self.txt_norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.txt_mlp = nn.Sequential(
nn.Linear(hidden_size, mlp_hidden_dim, bias=True),
nn.GELU(approximate="tanh"),
nn.Linear(mlp_hidden_dim, hidden_size, bias=True),
)
def forward(self, img: Tensor, txt: Tensor, vec: Tensor, pe: Tensor) -> tuple[Tensor, Tensor]:
img_mod1, img_mod2 = self.img_mod(vec)
txt_mod1, txt_mod2 = self.txt_mod(vec)
# prepare image for attention
img_modulated = self.img_norm1(img)
img_modulated = (1 + img_mod1.scale) * img_modulated + img_mod1.shift
img_qkv = self.img_attn.qkv(img_modulated)
img_q, img_k, img_v = rearrange(img_qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads)
img_q, img_k = self.img_attn.norm(img_q, img_k, img_v)
# prepare txt for attention
txt_modulated = self.txt_norm1(txt)
txt_modulated = (1 + txt_mod1.scale) * txt_modulated + txt_mod1.shift
txt_qkv = self.txt_attn.qkv(txt_modulated)
txt_q, txt_k, txt_v = rearrange(txt_qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads)
txt_q, txt_k = self.txt_attn.norm(txt_q, txt_k, txt_v)
# run actual attention
q = torch.cat((txt_q, img_q), dim=2)
k = torch.cat((txt_k, img_k), dim=2)
v = torch.cat((txt_v, img_v), dim=2)
attn = attention(q, k, v, pe=pe)
txt_attn, img_attn = attn[:, : txt.shape[1]], attn[:, txt.shape[1] :]
# calculate the img bloks
img = img + img_mod1.gate * self.img_attn.proj(img_attn)
img = img + img_mod2.gate * self.img_mlp((1 + img_mod2.scale) * self.img_norm2(img) + img_mod2.shift)
# calculate the txt bloks
txt = txt + txt_mod1.gate * self.txt_attn.proj(txt_attn)
txt = txt + txt_mod2.gate * self.txt_mlp((1 + txt_mod2.scale) * self.txt_norm2(txt) + txt_mod2.shift)
return img, txt
class SingleStreamBlock(nn.Module):
"""
A DiT block with parallel linear layers as described in
https://arxiv.org/abs/2302.05442 and adapted modulation interface.
"""
def __init__(
self,
hidden_size: int,
num_heads: int,
mlp_ratio: float = 4.0,
qk_scale: float | None = None,
):
super().__init__()
self.hidden_dim = hidden_size
self.num_heads = num_heads
head_dim = hidden_size // num_heads
self.scale = qk_scale or head_dim**-0.5
self.mlp_hidden_dim = int(hidden_size * mlp_ratio)
# qkv and mlp_in
self.linear1 = nn.Linear(hidden_size, hidden_size * 3 + self.mlp_hidden_dim)
# proj and mlp_out
self.linear2 = nn.Linear(hidden_size + self.mlp_hidden_dim, hidden_size)
self.norm = QKNorm(head_dim)
self.hidden_size = hidden_size
self.pre_norm = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.mlp_act = nn.GELU(approximate="tanh")
self.modulation = Modulation(hidden_size, double=False)
def forward(self, x: Tensor, vec: Tensor, pe: Tensor) -> Tensor:
mod, _ = self.modulation(vec)
x_mod = (1 + mod.scale) * self.pre_norm(x) + mod.shift
qkv, mlp = torch.split(self.linear1(x_mod), [3 * self.hidden_size, self.mlp_hidden_dim], dim=-1)
q, k, v = rearrange(qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads)
q, k = self.norm(q, k, v)
# compute attention
attn = attention(q, k, v, pe=pe)
# compute activation in mlp stream, cat again and run second linear layer
output = self.linear2(torch.cat((attn, self.mlp_act(mlp)), 2))
return x + mod.gate * output
class LastLayer(nn.Module):
def __init__(self, hidden_size: int, patch_size: int, out_channels: int):
super().__init__()
self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.linear = nn.Linear(hidden_size, patch_size * patch_size * out_channels, bias=True)
self.adaLN_modulation = nn.Sequential(nn.SiLU(), nn.Linear(hidden_size, 2 * hidden_size, bias=True))
def forward(self, x: Tensor, vec: Tensor) -> Tensor:
shift, scale = self.adaLN_modulation(vec).chunk(2, dim=1)
x = (1 + scale[:, None, :]) * self.norm_final(x) + shift[:, None, :]
x = self.linear(x)
return x
class FluxParams:
in_channels: int = 64
vec_in_dim: int = 768
context_in_dim: int = 4096
hidden_size: int = 3072
mlp_ratio: float = 4.0
num_heads: int = 24
depth: int = 19
depth_single_blocks: int = 38
axes_dim: list = [16, 56, 56]
theta: int = 10_000
qkv_bias: bool = True
guidance_embed: bool = True
class Flux(nn.Module):
"""
Transformer model for flow matching on sequences.
"""
def __init__(self, params = FluxParams()):
super().__init__()
self.params = params
self.in_channels = params.in_channels
self.out_channels = self.in_channels
if params.hidden_size % params.num_heads != 0:
raise ValueError(
f"Hidden size {params.hidden_size} must be divisible by num_heads {params.num_heads}"
)
pe_dim = params.hidden_size // params.num_heads
if sum(params.axes_dim) != pe_dim:
raise ValueError(f"Got {params.axes_dim} but expected positional dim {pe_dim}")
self.hidden_size = params.hidden_size
self.num_heads = params.num_heads
self.pe_embedder = EmbedND(dim=pe_dim, theta=params.theta, axes_dim=params.axes_dim)
self.img_in = nn.Linear(self.in_channels, self.hidden_size, bias=True)
self.time_in = MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size)
self.vector_in = MLPEmbedder(params.vec_in_dim, self.hidden_size)
self.guidance_in = (
MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size) if params.guidance_embed else nn.Identity()
)
self.txt_in = nn.Linear(params.context_in_dim, self.hidden_size)
self.double_blocks = nn.ModuleList(
[
DoubleStreamBlock(
self.hidden_size,
self.num_heads,
mlp_ratio=params.mlp_ratio,
qkv_bias=params.qkv_bias,
)
for _ in range(params.depth)
]
)
self.single_blocks = nn.ModuleList(
[
SingleStreamBlock(self.hidden_size, self.num_heads, mlp_ratio=params.mlp_ratio)
for _ in range(params.depth_single_blocks)
]
)
self.final_layer = LastLayer(self.hidden_size, 1, self.out_channels)
def forward(
self,
img: Tensor,
img_ids: Tensor,
txt: Tensor,
txt_ids: Tensor,
timesteps: Tensor,
y: Tensor,
guidance: Tensor | None = None,
) -> Tensor:
if img.ndim != 3 or txt.ndim != 3:
raise ValueError("Input img and txt tensors must have 3 dimensions.")
# running on sequences img
img = self.img_in(img)
vec = self.time_in(timestep_embedding(timesteps, 256))
if self.params.guidance_embed:
if guidance is None:
raise ValueError("Didn't get guidance strength for guidance distilled model.")
vec = vec + self.guidance_in(timestep_embedding(guidance, 256))
vec = vec + self.vector_in(y)
txt = self.txt_in(txt)
ids = torch.cat((txt_ids, img_ids), dim=1)
pe = self.pe_embedder(ids)
for block in self.double_blocks:
img, txt = block(img=img, txt=txt, vec=vec, pe=pe)
img = torch.cat((txt, img), 1)
for block in self.single_blocks:
img = block(img, vec=vec, pe=pe)
img = img[:, txt.shape[1] :, ...]
img = self.final_layer(img, vec) # (N, T, patch_size ** 2 * out_channels)
return img
def prepare(t5: HFEmbedder, clip: HFEmbedder, img: Tensor, prompt: str | list[str]) -> dict[str, Tensor]:
bs, c, h, w = img.shape
if bs == 1 and not isinstance(prompt, str):
bs = len(prompt)
img = rearrange(img, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=2, pw=2)
if img.shape[0] == 1 and bs > 1:
img = repeat(img, "1 ... -> bs ...", bs=bs)
img_ids = torch.zeros(h // 2, w // 2, 3)
img_ids[..., 1] = img_ids[..., 1] + torch.arange(h // 2)[:, None]
img_ids[..., 2] = img_ids[..., 2] + torch.arange(w // 2)[None, :]
img_ids = repeat(img_ids, "h w c -> b (h w) c", b=bs)
if isinstance(prompt, str):
prompt = [prompt]
txt = t5(prompt)
if txt.shape[0] == 1 and bs > 1:
txt = repeat(txt, "1 ... -> bs ...", bs=bs)
txt_ids = torch.zeros(bs, txt.shape[1], 3)
vec = clip(prompt)
if vec.shape[0] == 1 and bs > 1:
vec = repeat(vec, "1 ... -> bs ...", bs=bs)
return {
"img": img,
"img_ids": img_ids.to(img.device),
"txt": txt.to(img.device),
"txt_ids": txt_ids.to(img.device),
"vec": vec.to(img.device),
}
def time_shift(mu: float, sigma: float, t: Tensor):
return math.exp(mu) / (math.exp(mu) + (1 / t - 1) ** sigma)
def get_lin_function(
x1: float = 256, y1: float = 0.5, x2: float = 4096, y2: float = 1.15
) -> Callable[[float], float]:
m = (y2 - y1) / (x2 - x1)
b = y1 - m * x1
return lambda x: m * x + b
def get_schedule(
num_steps: int,
image_seq_len: int,
base_shift: float = 0.5,
max_shift: float = 1.15,
shift: bool = True,
) -> list[float]:
# extra step for zero
timesteps = torch.linspace(1, 0, num_steps + 1)
# shifting the schedule to favor high timesteps for higher signal images
if shift:
# eastimate mu based on linear estimation between two points
mu = get_lin_function(y1=base_shift, y2=max_shift)(image_seq_len)
timesteps = time_shift(mu, 1.0, timesteps)
return timesteps.tolist()
def denoise(
model: Flux,
# model input
img: Tensor,
img_ids: Tensor,
txt: Tensor,
txt_ids: Tensor,
vec: Tensor,
# sampling parameters
timesteps: list[float],
guidance: float = 4.0,
):
# this is ignored for schnell
guidance_vec = torch.full((img.shape[0],), guidance, device=img.device, dtype=img.dtype)
for t_curr, t_prev in tqdm(zip(timesteps[:-1], timesteps[1:]), total=len(timesteps) - 1):
t_vec = torch.full((img.shape[0],), t_curr, dtype=img.dtype, device=img.device)
pred = model(
img=img,
img_ids=img_ids,
txt=txt,
txt_ids=txt_ids,
y=vec,
timesteps=t_vec,
guidance=guidance_vec,
)
img = img + (t_prev - t_curr) * pred
return img
def unpack(x: Tensor, height: int, width: int) -> Tensor:
return rearrange(
x,
"b (h w) (c ph pw) -> b c (h ph) (w pw)",
h=math.ceil(height / 16),
w=math.ceil(width / 16),
ph=2,
pw=2,
)
@dataclass
class SamplingOptions:
prompt: str
width: int
height: int
guidance: float
seed: int | None
def get_image(image) -> torch.Tensor | None:
if image is None:
return None
image = Image.fromarray(image).convert("RGB")
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Lambda(lambda x: 2.0 * x - 1.0),
])
img: torch.Tensor = transform(image)
return img[None, ...]
# ---------------- Demo ----------------
from pathlib import Path
if not Path("flux1-dev-bnb-nf4.safetensors").exists():
torch.hub.download_url_to_file("https://huggingface.co/lllyasviel/flux1-dev-bnb-nf4/resolve/main/flux1-dev-bnb-nf4.safetensors", "flux1-dev-bnb-nf4.safetensors")
sd = load_file("flux1-dev-bnb-nf4.safetensors")
sd = {k.replace("model.diffusion_model.", ""): v for k, v in sd.items() if "model.diffusion_model" in k}
model = Flux().to(dtype=torch.float16, device="cuda")
result = model.load_state_dict(sd)
print(result)
# model = Flux().to(dtype=torch.bfloat16, device="cuda")
# result = model.load_state_dict(load_file("/storage/dev/nyanko/flux-dev/flux1-dev.sft"))
@torch.inference_mode()
def generate_image(
prompt, width, height, guidance, seed,
do_img2img, init_image, image2image_strength, resize_img,
progress=gr.Progress(track_tqdm=True),
):
if seed == 0:
seed = int(random.random() * 1000000)
device = "cuda" if torch.cuda.is_available() else "cpu"
torch_device = torch.device(device)
if do_img2img and init_image is not None:
init_image = get_image(init_image)
if resize_img:
init_image = torch.nn.functional.interpolate(init_image, (height, width))
else:
h, w = init_image.shape[-2:]
init_image = init_image[..., : 16 * (h // 16), : 16 * (w // 16)]
height = init_image.shape[-2]
width = init_image.shape[-1]
init_image = ae.encode(init_image.to(torch_device))
generator = torch.Generator(device=device).manual_seed(seed)
x = torch.randn(1, 16, 2 * math.ceil(height / 16), 2 * math.ceil(width / 16), device=device, dtype=torch.bfloat16, generator=generator)
num_steps = 25
timesteps = get_schedule(num_steps, (x.shape[-1] * x.shape[-2]) // 4, shift=True)
if do_img2img and init_image is not None:
t_idx = int((1 - image2image_strength) * num_steps)
t = timesteps[t_idx]
timesteps = timesteps[t_idx:]
x = t * x + (1.0 - t) * init_image.to(x.dtype)
inp = prepare(t5=t5, clip=clip, img=x, prompt=prompt)
x = denoise(model, **inp, timesteps=timesteps, guidance=guidance)
x = unpack(x.float(), height, width)
with torch.autocast(device_type=torch_device.type, dtype=torch.bfloat16):
x = x = (x / ae.config.scaling_factor) + ae.config.shift_factor
x = ae.decode(x).sample
x = x.clamp(-1, 1)
x = rearrange(x[0], "c h w -> h w c")
img = Image.fromarray((127.5 * (x + 1.0)).cpu().byte().numpy())
return img, seed
def create_demo():
with gr.Blocks(theme="bethecloud/storj_theme") as demo:
gr.HTML(
"""
<div style="text-align: center; margin: 0 auto;">
<div
style="
display: inline-flex;
align-items: center;
gap: 0.8rem;
font-size: 1.75rem;
"
>
<svg
width="0.65em"
height="0.65em"
viewBox="0 0 115 115"
fill="none"
xmlns="http://www.w3.org/2000/svg"
>
<rect width="23" height="23" fill="white"></rect>
<rect y="69" width="23" height="23" fill="white"></rect>
<rect x="23" width="23" height="23" fill="#AEAEAE"></rect>
<rect x="23" y="69" width="23" height="23" fill="#AEAEAE"></rect>
<rect x="46" width="23" height="23" fill="white"></rect>
<rect x="46" y="69" width="23" height="23" fill="white"></rect>
<rect x="69" width="23" height="23" fill="black"></rect>
<rect x="69" y="69" width="23" height="23" fill="black"></rect>
<rect x="92" width="23" height="23" fill="#D9D9D9"></rect>
<rect x="92" y="69" width="23" height="23" fill="#AEAEAE"></rect>
<rect x="115" y="46" width="23" height="23" fill="white"></rect>
<rect x="115" y="115" width="23" height="23" fill="white"></rect>
<rect x="115" y="69" width="23" height="23" fill="#D9D9D9"></rect>
<rect x="92" y="46" width="23" height="23" fill="#AEAEAE"></rect>
<rect x="92" y="115" width="23" height="23" fill="#AEAEAE"></rect>
<rect x="92" y="69" width="23" height="23" fill="white"></rect>
<rect x="69" y="46" width="23" height="23" fill="white"></rect>
<rect x="69" y="115" width="23" height="23" fill="white"></rect>
<rect x="69" y="69" width="23" height="23" fill="#D9D9D9"></rect>
<rect x="46" y="46" width="23" height="23" fill="black"></rect>
<rect x="46" y="115" width="23" height="23" fill="black"></rect>
<rect x="46" y="69" width="23" height="23" fill="black"></rect>
<rect x="23" y="46" width="23" height="23" fill="#D9D9D9"></rect>
<rect x="23" y="115" width="23" height="23" fill="#AEAEAE"></rect>
<rect x="23" y="69" width="23" height="23" fill="black"></rect>
</svg>
<h1 style="font-weight: 900; margin-bottom: 7px;margin-top:5px">
FLUX.1 dev NF4 Quantized Demo
</h1>
</div>
<p style="margin-bottom: 20px; font-size: 94%; line-height: 23px;">
12B param rectified flow transformer guidance-distilled from <a href="https://blackforestlabs.ai/">FLUX.1 [pro]</a>
<a href="https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md">[non-commercial license]</a> <a href="https://blackforestlabs.ai/announcing-black-forest-labs/">[blog]</a> <a href="https://huggingface.co/black-forest-labs/FLUX.1-dev">[model]</a>
</p>
</div>
"""
)
with gr.Row():
with gr.Column():
prompt = gr.Textbox(label="Prompt", value="a photo of a forest with mist swirling around the tree trunks. The word 'FLUX' is painted over it in big, red brush strokes with visible texture")
width = gr.Slider(minimum=128, maximum=2048, step=64, label="Width", value=1360)
height = gr.Slider(minimum=128, maximum=2048, step=64, label="Height", value=768)
guidance = gr.Slider(minimum=1.0, maximum=5.0, step=0.1, label="Guidance", value=3.5)
seed = gr.Number(label="Seed", precision=-1)
do_img2img = gr.Checkbox(label="Image to Image", value=False)
init_image = gr.Image(label="Input Image", visible=False)
image2image_strength = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label="Noising strength", value=0.8, visible=False)
resize_img = gr.Checkbox(label="Resize image", value=True, visible=False)
generate_button = gr.Button("Generate")
with gr.Column():
output_image = gr.Image(label="Generated Image")
output_seed = gr.Number(label="Used Seed", precision=0)
do_img2img.change(
fn=lambda x: [gr.update(visible=x), gr.update(visible=x), gr.update(visible=x)],
inputs=[do_img2img],
outputs=[init_image, image2image_strength, resize_img]
)
generate_button.click(
fn=generate_image,
inputs=[prompt, width, height, guidance, seed, do_img2img, init_image, image2image_strength, resize_img],
outputs=[output_image, output_seed]
)
examples = [
"a tiny astronaut hatching from an egg on the moon",
"a cat holding a sign that says hello world",
"an anime illustration of a wiener schnitzel",
]
return demo
if __name__ == "__main__":
demo = create_demo()
demo.launch()