ginipharm / app.py
openfree's picture
Update app.py
1fd4ab2 verified
raw
history blame
9.92 kB
import gradio as gr
from huggingface_hub import InferenceClient
import os
import pandas as pd
from typing import List, Tuple
# LLM Models Definition
LLM_MODELS = {
"Cohere c4ai-crp-08-2024": "CohereForAI/c4ai-command-r-plus-08-2024", # Default
"Meta Llama3.3-70B": "meta-llama/Llama-3.3-70B-Instruct",
"Mistral Nemo 2407": "mistralai/Mistral-Nemo-Instruct-2407",
"Alibaba Qwen QwQ-32B": "Qwen/QwQ-32B-Preview"
}
def get_client(model_name):
return InferenceClient(LLM_MODELS[model_name], token=os.getenv("HF_TOKEN"))
def analyze_file_content(content, file_type):
"""Analyze file content and return structural summary"""
if file_type in ['parquet', 'csv']:
try:
lines = content.split('\n')
header = lines[0]
columns = header.count('|') - 1
rows = len(lines) - 3
return f"πŸ“Š Dataset Structure: {columns} columns, {rows} data samples"
except:
return "❌ Dataset structure analysis failed"
lines = content.split('\n')
total_lines = len(lines)
non_empty_lines = len([line for line in lines if line.strip()])
if any(keyword in content.lower() for keyword in ['def ', 'class ', 'import ', 'function']):
functions = len([line for line in lines if 'def ' in line])
classes = len([line for line in lines if 'class ' in line])
imports = len([line for line in lines if 'import ' in line or 'from ' in line])
return f"πŸ’» Code Structure: {total_lines} lines (Functions: {functions}, Classes: {classes}, Imports: {imports})"
paragraphs = content.count('\n\n') + 1
words = len(content.split())
return f"πŸ“ Document Structure: {total_lines} lines, {paragraphs} paragraphs, ~{words} words"
def read_uploaded_file(file):
if file is None:
return "", ""
try:
file_ext = os.path.splitext(file.name)[1].lower()
if file_ext == '.parquet':
df = pd.read_parquet(file.name, engine='pyarrow')
content = df.head(10).to_markdown(index=False)
return content, "parquet"
elif file_ext == '.csv':
encodings = ['utf-8', 'cp949', 'euc-kr', 'latin1']
for encoding in encodings:
try:
df = pd.read_csv(file.name, encoding=encoding)
content = f"πŸ“Š Data Preview:\n{df.head(10).to_markdown(index=False)}\n\n"
content += f"\nπŸ“ˆ Data Information:\n"
content += f"- Total Rows: {len(df)}\n"
content += f"- Total Columns: {len(df.columns)}\n"
content += f"- Column List: {', '.join(df.columns)}\n"
content += f"\nπŸ“‹ Column Data Types:\n"
for col, dtype in df.dtypes.items():
content += f"- {col}: {dtype}\n"
null_counts = df.isnull().sum()
if null_counts.any():
content += f"\n⚠️ Missing Values:\n"
for col, null_count in null_counts[null_counts > 0].items():
content += f"- {col}: {null_count} missing\n"
return content, "csv"
except UnicodeDecodeError:
continue
raise UnicodeDecodeError(f"❌ Unable to read file with supported encodings ({', '.join(encodings)})")
else:
encodings = ['utf-8', 'cp949', 'euc-kr', 'latin1']
for encoding in encodings:
try:
with open(file.name, 'r', encoding=encoding) as f:
content = f.read()
return content, "text"
except UnicodeDecodeError:
continue
raise UnicodeDecodeError(f"❌ Unable to read file with supported encodings ({', '.join(encodings)})")
except Exception as e:
return f"❌ Error reading file: {str(e)}", "error"
def format_history(history):
formatted_history = []
for user_msg, assistant_msg in history:
formatted_history.append({"role": "user", "content": user_msg})
if assistant_msg:
formatted_history.append({"role": "assistant", "content": assistant_msg})
return formatted_history
def chat(message, history, uploaded_file, model_name, system_message="", max_tokens=4000, temperature=0.7, top_p=0.9):
system_prefix = """You are a file analysis expert. Analyze the uploaded file in depth from the following perspectives:
1. πŸ“‹ Overall structure and composition
2. πŸ“Š Key content and pattern analysis
3. πŸ“ˆ Data characteristics and meaning
- For datasets: Column meanings, data types, value distributions
- For text/code: Structural features, main patterns
4. πŸ’‘ Potential applications
5. ✨ Data quality and areas for improvement
Provide detailed and structured analysis from an expert perspective, but explain in an easy-to-understand way. Format the analysis results in Markdown and include specific examples where possible."""
if uploaded_file:
content, file_type = read_uploaded_file(uploaded_file)
if file_type == "error":
yield "", history + [[message, content]]
return
file_summary = analyze_file_content(content, file_type)
if file_type in ['parquet', 'csv']:
system_message += f"\n\nFile Content:\n```markdown\n{content}\n```"
else:
system_message += f"\n\nFile Content:\n```\n{content}\n```"
if message == "Starting file analysis...":
message = f"""[Structure Analysis] {file_summary}
Please provide detailed analysis from these perspectives:
1. πŸ“‹ Overall file structure and format
2. πŸ“Š Key content and component analysis
3. πŸ“ˆ Data/content characteristics and patterns
4. ⭐ Quality and completeness evaluation
5. πŸ’‘ Suggested improvements
6. 🎯 Practical applications and recommendations"""
messages = [{"role": "system", "content": f"{system_prefix} {system_message}"}]
messages.extend(format_history(history))
messages.append({"role": "user", "content": message})
try:
client = get_client(model_name)
partial_message = ""
for msg in client.chat_completion(
messages,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
):
token = msg.choices[0].delta.get('content', None)
if token:
partial_message += token
yield "", history + [[message, partial_message]]
except Exception as e:
error_msg = f"❌ Inference error: {str(e)}"
yield "", history + [[message, error_msg]]
css = """
footer {visibility: hidden}
"""
with gr.Blocks(theme="Yntec/HaleyCH_Theme_Orange", css=css, title="EveryChat πŸ€–") as demo:
gr.HTML(
"""
<div style="text-align: center; max-width: 800px; margin: 0 auto;">
<h1 style="font-size: 3em; font-weight: 600; margin: 0.5em;">EveryChat πŸ€–</h1>
<h3 style="font-size: 1.2em; margin: 1em;">Your Intelligent File Analysis Assistant πŸ“Š</h3>
</div>
"""
)
with gr.Row():
with gr.Column(scale=2):
chatbot = gr.Chatbot(height=600, label="Chat Interface πŸ’¬")
msg = gr.Textbox(
label="Type your message",
show_label=False,
placeholder="Ask me anything about the uploaded file... πŸ’­",
container=False
)
clear = gr.ClearButton([msg, chatbot], label="Clear Chat πŸ—‘οΈ")
with gr.Column(scale=1):
model_name = gr.Radio(
choices=list(LLM_MODELS.keys()),
value="Cohere c4ai-crp-08-2024",
label="Select LLM Model πŸ€–",
info="Choose your preferred AI model"
)
file_upload = gr.File(
label="Upload File πŸ“",
info="Support: Text, Code, CSV, Parquet files",
file_types=["text", ".csv", ".parquet"],
type="filepath"
)
with gr.Accordion("Advanced Settings βš™οΈ", open=False):
system_message = gr.Textbox(label="System Message πŸ“", value="")
max_tokens = gr.Slider(minimum=1, maximum=8000, value=4000, label="Max Tokens πŸ“Š")
temperature = gr.Slider(minimum=0, maximum=1, value=0.7, label="Temperature 🌑️")
top_p = gr.Slider(minimum=0, maximum=1, value=0.9, label="Top P πŸ“ˆ")
# Event bindings
msg.submit(
chat,
inputs=[msg, chatbot, file_upload, model_name, system_message, max_tokens, temperature, top_p],
outputs=[msg, chatbot],
queue=True
).then(
lambda: gr.update(interactive=True),
None,
[msg]
)
# Auto-analysis on file upload
file_upload.change(
chat,
inputs=[gr.Textbox(value="Starting file analysis..."), chatbot, file_upload, model_name, system_message, max_tokens, temperature, top_p],
outputs=[msg, chatbot],
queue=True
)
# Example queries
gr.Examples(
examples=[
["Please explain the overall structure and features of the file in detail πŸ“‹"],
["Analyze the main patterns and characteristics of this file πŸ“Š"],
["Evaluate the file's quality and potential improvements πŸ’‘"],
["How can we practically utilize this file? 🎯"],
["Summarize the main content and derive key insights ✨"],
["Please continue with more detailed analysis πŸ“ˆ"],
],
inputs=msg,
)
if __name__ == "__main__":
demo.launch()