File size: 3,725 Bytes
8f809e2
3573a39
5927800
3573a39
3a0ee14
a89f9d8
 
3f85daf
3573a39
a89f9d8
3a0ee14
 
 
3573a39
a89f9d8
136af2d
 
 
 
e95a647
136af2d
3573a39
a89f9d8
3a0ee14
 
136af2d
3a0ee14
136af2d
3a0ee14
9e4233f
5927800
3a0ee14
 
3573a39
3a0ee14
136af2d
 
3a0ee14
be473e6
 
 
 
5927800
3a0ee14
3573a39
3a0ee14
136af2d
3a0ee14
136af2d
3a0ee14
9e4233f
5927800
3a0ee14
 
3573a39
3a0ee14
136af2d
 
3a0ee14
a89f9d8
 
 
 
 
 
5927800
a89f9d8
3573a39
9e4233f
136af2d
9e4233f
136af2d
9e4233f
8f809e2
 
5927800
9e4233f
 
3573a39
9e4233f
136af2d
 
9e4233f
8f809e2
 
 
9e4233f
 
 
136af2d
9e4233f
 
5927800
9e4233f
3573a39
3a0ee14
 
 
 
 
 
9e4233f
8f809e2
3573a39
8f809e2
 
 
 
 
 
 
3573a39
8f809e2
 
 
5927800
8f809e2
3573a39
8f809e2
 
136af2d
8f809e2
a89f9d8
8f809e2
136af2d
8f809e2
136af2d
041cafd
136af2d
8f809e2
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
import os
import subprocess
import gradio as gr
import yaml

import pipe

YAML_PATH = "./cicd/configs"


class Dumper(yaml.Dumper):
    def increase_indent(self, flow=False, *args, **kwargs):
        return super().increase_indent(flow=flow, indentless=False)


def get_yaml_path(uid):
    if not os.path.exists(YAML_PATH):
        os.makedirs(YAML_PATH)
    if not os.path.exists(f"{YAML_PATH}/{uid}_config.yaml"):
        os.system(f"cp config.yaml {YAML_PATH}/{uid}_config.yaml")
    return f"{YAML_PATH}/{uid}_config.yaml"


# read scanners from yaml file
# return a list of scanners
def read_scanners(uid):
    scanners = []
    with open(get_yaml_path(uid), "r") as f:
        config = yaml.load(f, Loader=yaml.FullLoader)
        scanners = config.get("detectors", [])
    f.close()
    return scanners


# convert a list of scanners to yaml file
def write_scanners(scanners, uid):
    with open(get_yaml_path(uid), "r+") as f:
        config = yaml.load(f, Loader=yaml.FullLoader)
        if config:
            config["detectors"] = scanners
            # save scanners to detectors in yaml
            yaml.dump(config, f, Dumper=Dumper)
    f.close()


# read model_type from yaml file
def read_inference_type(uid):
    inference_type = ""
    with open(get_yaml_path(uid), "r") as f:
        config = yaml.load(f, Loader=yaml.FullLoader)
        inference_type = config.get("inference_type", "")
    f.close()
    return inference_type


# write model_type to yaml file
def write_inference_type(use_inference, uid):
    with open(get_yaml_path(uid), "r+") as f:
        config = yaml.load(f, Loader=yaml.FullLoader)
        if use_inference:
            config["inference_type"] = "hf_inference_api"
        else:
            config["inference_type"] = "hf_pipeline"
        # save inference_type to inference_type in yaml
        yaml.dump(config, f, Dumper=Dumper)
    f.close()


# read column mapping from yaml file
def read_column_mapping(uid):
    column_mapping = {}
    with open(get_yaml_path(uid), "r") as f:
        config = yaml.load(f, Loader=yaml.FullLoader)
        if config:
            column_mapping = config.get("column_mapping", dict())
    f.close()
    return column_mapping


# write column mapping to yaml file
def write_column_mapping(mapping, uid):
    with open(get_yaml_path(uid), "r") as f:
        config = yaml.load(f, Loader=yaml.FullLoader)
    if config is None:
        return
    if mapping is None and "column_mapping" in config.keys():
        del config["column_mapping"]
    else:
        config["column_mapping"] = mapping
    with open(get_yaml_path(uid), "w") as f:
        # save column_mapping to column_mapping in yaml
        yaml.dump(config, f, Dumper=Dumper)
    f.close()


# convert column mapping dataframe to json
def convert_column_mapping_to_json(df, label=""):
    column_mapping = {}
    column_mapping[label] = []
    for _, row in df.iterrows():
        column_mapping[label].append(row.tolist())
    return column_mapping


def get_logs_file(uid):
    try:
        file = open(f"./tmp/{uid}_log", "r")
        return file.read()
    except Exception:
        return "Log file does not exist"


def write_log_to_user_file(id, log):
    with open(f"./tmp/{id}_log", "a") as f:
        f.write(log)
    f.close()


def save_job_to_pipe(id, job, lock):
    with lock:
        pipe.jobs.append((id, job))


def pop_job_from_pipe():
    if len(pipe.jobs) == 0:
        return
    job_info = pipe.jobs.pop()
    write_log_to_user_file(job_info[0], f"Running job id {job_info[0]}\n")
    command = job_info[1]

    log_file = open(f"./tmp/{job_info[0]}_log", "a")
    subprocess.Popen(
        command,
        stdout=log_file,
        stderr=log_file,
    )