File size: 2,888 Bytes
074e471
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
#!/usr/bin/env python
# coding: utf-8

# In[1]:


import gradio

from fastai.vision.all import *
from fastai.data.all import *
from pathlib import Path
import pandas as pd
from matplotlib.pyplot import specgram
import librosa
import librosa.display
from huggingface_hub import hf_hub_download
from fastai.learner import load_learner


# In[9]:


ref_file = hf_hub_download("gputrain/UrbanSound8K-model", "UrbanSound8K.csv")

model_file = hf_hub_download("gputrain/UrbanSound8K-model", "model.pkl")


# In[10]:


df = pd.read_csv(ref_file) 
df['fname'] = df[['slice_file_name','fold']].apply (lambda x: str(x['slice_file_name'][:-4])+'.png'.strip(),axis=1 )
my_dict = dict(zip(df.fname,df['class']))
def label_func(f_name):
    f_name = str(f_name).split('/')[-1:][0]
    return my_dict[f_name]
model = load_learner (model_file)
EXAMPLES_PATH = Path("./examples")
labels = model.dls.vocab


# In[11]:


with open("article.md") as f:
    article = f.read()


# In[12]:


interface_options = {
    "title": "Urban Sound 8K Classification",
    "description": "Fast AI example of using a pre-trained Resnet34 vision model for an audio classification task on the [Urban Sounds](https://urbansounddataset.weebly.com/urbansound8k.html) dataset. ",
    "article": article,
    "interpretation": "default",
    "layout": "horizontal",
    # Audio from validation file
    "examples": ["dog_bark.wav", "children_playing.wav", "air_conditioner.wav", "street_music.wav", "engine_idling.wav",
                "jackhammer.wav", "drilling.wav", "siren.wav","car_horn.wav","gun_shot.wav"],
    "allow_flagging": "never"
}


# In[13]:


def convert_sounds_melspectogram (audio_file):

    samples, sample_rate = librosa.load(audio_file)  #create onces with librosa

    fig = plt.figure(figsize=[0.72,0.72])
    ax = fig.add_subplot(111)
    ax.axes.get_xaxis().set_visible(False)
    ax.axes.get_yaxis().set_visible(False)
    ax.set_frame_on(False)
    melS = librosa.feature.melspectrogram(y=samples, sr=sample_rate)
    librosa.display.specshow(librosa.power_to_db(melS, ref=np.max))
    filename  = 'temp.png'
    plt.savefig(filename, dpi=400, bbox_inches='tight',pad_inches=0)
    plt.close('all')
    
    return None


# In[14]:


def predict():
    img = PILImage.create('temp.png')
    pred,pred_idx,probs = model.predict(img)
    return {labels[i]: float(probs[i]) for i in range(len(labels))}
    return labels_probs


# In[20]:


def end2endpipeline(filename):
    convert_sounds_melspectogram(filename)
    return predict()


# In[16]:


demo = gradio.Interface(
    fn=end2endpipeline,
    inputs=gradio.inputs.Audio(source="upload", type="filepath"),
    outputs=gradio.outputs.Label(num_top_classes=10),
    **interface_options,
)


# In[19]:


launch_options = {
    "enable_queue": True,
    "share": False,
    #"cache_examples": True,
}

demo.launch(**launch_options)


# In[ ]: