Spaces:
Runtime error
Runtime error
File size: 2,888 Bytes
074e471 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 |
#!/usr/bin/env python
# coding: utf-8
# In[1]:
import gradio
from fastai.vision.all import *
from fastai.data.all import *
from pathlib import Path
import pandas as pd
from matplotlib.pyplot import specgram
import librosa
import librosa.display
from huggingface_hub import hf_hub_download
from fastai.learner import load_learner
# In[9]:
ref_file = hf_hub_download("gputrain/UrbanSound8K-model", "UrbanSound8K.csv")
model_file = hf_hub_download("gputrain/UrbanSound8K-model", "model.pkl")
# In[10]:
df = pd.read_csv(ref_file)
df['fname'] = df[['slice_file_name','fold']].apply (lambda x: str(x['slice_file_name'][:-4])+'.png'.strip(),axis=1 )
my_dict = dict(zip(df.fname,df['class']))
def label_func(f_name):
f_name = str(f_name).split('/')[-1:][0]
return my_dict[f_name]
model = load_learner (model_file)
EXAMPLES_PATH = Path("./examples")
labels = model.dls.vocab
# In[11]:
with open("article.md") as f:
article = f.read()
# In[12]:
interface_options = {
"title": "Urban Sound 8K Classification",
"description": "Fast AI example of using a pre-trained Resnet34 vision model for an audio classification task on the [Urban Sounds](https://urbansounddataset.weebly.com/urbansound8k.html) dataset. ",
"article": article,
"interpretation": "default",
"layout": "horizontal",
# Audio from validation file
"examples": ["dog_bark.wav", "children_playing.wav", "air_conditioner.wav", "street_music.wav", "engine_idling.wav",
"jackhammer.wav", "drilling.wav", "siren.wav","car_horn.wav","gun_shot.wav"],
"allow_flagging": "never"
}
# In[13]:
def convert_sounds_melspectogram (audio_file):
samples, sample_rate = librosa.load(audio_file) #create onces with librosa
fig = plt.figure(figsize=[0.72,0.72])
ax = fig.add_subplot(111)
ax.axes.get_xaxis().set_visible(False)
ax.axes.get_yaxis().set_visible(False)
ax.set_frame_on(False)
melS = librosa.feature.melspectrogram(y=samples, sr=sample_rate)
librosa.display.specshow(librosa.power_to_db(melS, ref=np.max))
filename = 'temp.png'
plt.savefig(filename, dpi=400, bbox_inches='tight',pad_inches=0)
plt.close('all')
return None
# In[14]:
def predict():
img = PILImage.create('temp.png')
pred,pred_idx,probs = model.predict(img)
return {labels[i]: float(probs[i]) for i in range(len(labels))}
return labels_probs
# In[20]:
def end2endpipeline(filename):
convert_sounds_melspectogram(filename)
return predict()
# In[16]:
demo = gradio.Interface(
fn=end2endpipeline,
inputs=gradio.inputs.Audio(source="upload", type="filepath"),
outputs=gradio.outputs.Label(num_top_classes=10),
**interface_options,
)
# In[19]:
launch_options = {
"enable_queue": True,
"share": False,
#"cache_examples": True,
}
demo.launch(**launch_options)
# In[ ]:
|