Spaces:
Running
Running
File size: 2,352 Bytes
d0c0967 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 |
# URL: https://huggingface.co/spaces/gradio/animeganv2
# imports
import gradio as gr
from PIL import Image
import torch
# load the models
model2 = torch.hub.load(
"AK391/animegan2-pytorch:main",
"generator",
pretrained=True,
device="cuda",
progress=False
)
model1 = torch.hub.load("AK391/animegan2-pytorch:main", "generator", pretrained="face_paint_512_v1", device="cuda")
face2paint = torch.hub.load(
'AK391/animegan2-pytorch:main', 'face2paint',
size=512, device="cuda",side_by_side=False
)
# define the core function
def inference(img, ver):
if ver == 'version 2 (πΊ robustness,π» stylization)':
out = face2paint(model2, img)
else:
out = face2paint(model1, img)
return out
# define the title, description and examples
title = "AnimeGANv2"
description = "Gradio Demo for AnimeGanv2 Face Portrait. To use it, simply upload your image, or click one of the examples to load them. Read more at the links below. Please use a cropped portrait picture for best results similar to the examples below."
article = "<p style='text-align: center'><a href='https://github.com/bryandlee/animegan2-pytorch' target='_blank'>Github Repo Pytorch</a></p> <center><img src='https://visitor-badge.glitch.me/badge?page_id=akhaliq_animegan' alt='visitor badge'></center></p>"
examples=[['groot.jpeg','version 2 (πΊ robustness,π» stylization)'],['bill.png','version 1 (πΊ stylization, π» robustness)'],['tony.png','version 1 (πΊ stylization, π» robustness)'],['elon.png','version 2 (πΊ robustness,π» stylization)'],['IU.png','version 1 (πΊ stylization, π» robustness)'],['billie.png','version 2 (πΊ robustness,π» stylization)'],['will.png','version 2 (πΊ robustness,π» stylization)'],['beyonce.png','version 1 (πΊ stylization, π» robustness)'],['gongyoo.jpeg','version 1 (πΊ stylization, π» robustness)']]
# define the interface
demo = gr.Interface(
fn=inference,
inputs=[gr.inputs.Image(type="pil"),gr.inputs.Radio(['version 1 (πΊ stylization, π» robustness)','version 2 (πΊ robustness,π» stylization)'], type="value", default='version 2 (πΊ robustness,π» stylization)', label='version')],
outputs=gr.outputs.Image(type="pil"),
title=title,
description=description,
article=article,
examples=examples)
# launch
demo.launch() |