|
|
|
import os |
|
import pandas as pd |
|
import numpy as np |
|
import streamlit as st |
|
import re |
|
import pickle |
|
def preprocess(q): |
|
q=str(q).lower().strip() |
|
|
|
q=q.replace('%',' percent ') |
|
q=q.replace('@',' at ') |
|
q=q.replace('$',' dollar ') |
|
|
|
q=q.replace('[math]','') |
|
|
|
q=q.replace(',000,000,000 ','b ') |
|
q=q.replace(',000,000 ','m ') |
|
q=q.replace(',000 ','k ') |
|
|
|
import re |
|
q=re.sub(r'([0-9]+)000000000',r'\1b',q) |
|
q=re.sub(r'([0-9]+)000000',r'\1m',q) |
|
q=re.sub(r'([0-9]+)000',r'\1k',q) |
|
|
|
contractions = { |
|
"ain't": "am not", |
|
"aren't": "are not", |
|
"can't": "can not", |
|
"can't've": "can not have", |
|
"'cause": "because", |
|
"could've": "could have", |
|
"couldn't": "could not", |
|
"couldn't've": "could not have", |
|
"didn't": "did not", |
|
"doesn't": "does not", |
|
"don't": "do not", |
|
"hadn't": "had not", |
|
"hadn't've": "had not have", |
|
"hasn't": "has not", |
|
"haven't": "have not", |
|
"he'd": "he would", |
|
"he'd've": "he would have", |
|
"he'll": "he will", |
|
"he'll've": "he will have", |
|
"he's": "he is", |
|
"how'd": "how did", |
|
"how'd'y": "how do you", |
|
"how'll": "how will", |
|
"how's": "how is", |
|
"i'd": "i would", |
|
"i'd've": "i would have", |
|
"i'll": "i will", |
|
"i'll've": "i will have", |
|
"i'm": "i am", |
|
"i've": "i have", |
|
"isn't": "is not", |
|
"it'd": "it would", |
|
"it'd've": "it would have", |
|
"it'll": "it will", |
|
"it'll've": "it will have", |
|
"it's": "it is", |
|
"let's": "let us", |
|
"ma'am": "madam", |
|
"mayn't": "may not", |
|
"might've": "might have", |
|
"mightn't": "might not", |
|
"mightn't've": "might not have", |
|
"must've": "must have", |
|
"mustn't": "must not", |
|
"mustn't've": "must not have", |
|
"needn't": "need not", |
|
"needn't've": "need not have", |
|
"o'clock": "of the clock", |
|
"oughtn't": "ought not", |
|
"oughtn't've": "ought not have", |
|
"shan't": "shall not", |
|
"sha'n't": "shall not", |
|
"shan't've": "shall not have", |
|
"she'd": "she would", |
|
"she'd've": "she would have", |
|
"she'll": "she will", |
|
"she'll've": "she will have", |
|
"she's": "she is", |
|
"should've": "should have", |
|
"shouldn't": "should not", |
|
"shouldn't've": "should not have", |
|
"so've": "so have", |
|
"so's": "so as", |
|
"that'd": "that would", |
|
"that'd've": "that would have", |
|
"that's": "that is", |
|
"there'd": "there would", |
|
"there'd've": "there would have", |
|
"there's": "there is", |
|
"they'd": "they would", |
|
"they'd've": "they would have", |
|
"they'll": "they will", |
|
"they'll've": "they will have", |
|
"they're": "they are", |
|
"they've": "they have", |
|
"to've": "to have", |
|
"wasn't": "was not", |
|
"we'd": "we would", |
|
"we'd've": "we would have", |
|
"we'll": "we will", |
|
"we'll've": "we will have", |
|
"we're": "we are", |
|
"we've": "we have", |
|
"weren't": "were not", |
|
"what'll": "what will", |
|
"what'll've": "what will have", |
|
"what're": "what are", |
|
"what's": "what is", |
|
"what've": "what have", |
|
"when's": "when is", |
|
"when've": "when have", |
|
"where'd": "where did", |
|
"where's": "where is", |
|
"where've": "where have", |
|
"who'll": "who will", |
|
"who'll've": "who will have", |
|
"who's": "who is", |
|
"who've": "who have", |
|
"why's": "why is", |
|
"why've": "why have", |
|
"will've": "will have", |
|
"won't": "will not", |
|
"won't've": "will not have", |
|
"would've": "would have", |
|
"wouldn't": "would not", |
|
"wouldn't've": "would not have", |
|
"y'all": "you all", |
|
"y'all'd": "you all would", |
|
"y'all'd've": "you all would have", |
|
"y'all're": "you all are", |
|
"y'all've": "you all have", |
|
"you'd": "you would", |
|
"you'd've": "you would have", |
|
"you'll": "you will", |
|
"you'll've": "you will have", |
|
"you're": "you are", |
|
"you've": "you have" |
|
} |
|
|
|
q_decontracted = [] |
|
|
|
for word in q.split(): |
|
if word in contractions: |
|
word = contractions[word] |
|
|
|
q_decontracted.append(word) |
|
|
|
q = ' '.join(q_decontracted) |
|
q = q.replace("'ve", " have") |
|
q = q.replace("n't", " not") |
|
q = q.replace("'re", " are") |
|
q = q.replace("'ll", " will") |
|
|
|
q=re.sub(re.compile('<.*?>'),'',q) |
|
|
|
import string |
|
q=q.translate(str.maketrans('', '', string.punctuation)) |
|
|
|
return q |
|
|
|
def common_words(row): |
|
w1=set(map(lambda word: word.lower().strip(),row['question1'].split(" "))) |
|
w2=set(map(lambda word: word.lower().strip(),row['question2'].split(" "))) |
|
return len(w1 & w2) |
|
|
|
def total_words(row): |
|
w1=set(map(lambda word: word.lower().strip(),row['question1'].split(" "))) |
|
w2=set(map(lambda word: word.lower().strip(),row['question2'].split(" "))) |
|
return len(w1) + len(w2) |
|
|
|
import nltk |
|
|
|
nltk.download("stopwords") |
|
from nltk.corpus import stopwords |
|
|
|
def fetch_token_features(row): |
|
|
|
q1 = row['question1'] |
|
q2 = row['question2'] |
|
|
|
SAFE_DIV = 0.0001 |
|
|
|
STOP_WORDS = stopwords.words("english") |
|
|
|
token_features = [0.0]*8 |
|
|
|
|
|
q1_tokens = q1.split() |
|
q2_tokens = q2.split() |
|
|
|
if len(q1_tokens) == 0 or len(q2_tokens) == 0: |
|
return token_features |
|
|
|
|
|
q1_words = set([word for word in q1_tokens if word not in STOP_WORDS]) |
|
q2_words = set([word for word in q2_tokens if word not in STOP_WORDS]) |
|
|
|
|
|
q1_stops = set([word for word in q1_tokens if word in STOP_WORDS]) |
|
q2_stops = set([word for word in q2_tokens if word in STOP_WORDS]) |
|
|
|
|
|
common_word_count = len(q1_words.intersection(q2_words)) |
|
|
|
|
|
common_stop_count = len(q1_stops.intersection(q2_stops)) |
|
|
|
|
|
common_token_count = len(set(q1_tokens).intersection(set(q2_tokens))) |
|
|
|
|
|
token_features[0] = common_word_count / (min(len(q1_words), len(q2_words)) + SAFE_DIV) |
|
token_features[1] = common_word_count / (max(len(q1_words), len(q2_words)) + SAFE_DIV) |
|
token_features[2] = common_stop_count / (min(len(q1_stops), len(q2_stops)) + SAFE_DIV) |
|
token_features[3] = common_stop_count / (max(len(q1_stops), len(q2_stops)) + SAFE_DIV) |
|
token_features[4] = common_token_count / (min(len(q1_tokens), len(q2_tokens)) + SAFE_DIV) |
|
token_features[5] = common_token_count / (max(len(q1_tokens), len(q2_tokens)) + SAFE_DIV) |
|
|
|
|
|
token_features[6] = int(q1_tokens[-1] == q2_tokens[-1]) |
|
|
|
|
|
token_features[7] = int(q1_tokens[0] == q2_tokens[0]) |
|
|
|
return token_features |
|
|
|
import distance |
|
|
|
def fetch_length_features(row): |
|
|
|
q1 = row['question1'] |
|
q2 = row['question2'] |
|
|
|
length_features = [0.0]*3 |
|
|
|
|
|
q1_tokens = q1.split() |
|
q2_tokens = q2.split() |
|
|
|
if len(q1_tokens) == 0 or len(q2_tokens) == 0: |
|
return length_features |
|
|
|
|
|
length_features[0] = abs(len(q1_tokens) - len(q2_tokens)) |
|
|
|
|
|
length_features[1] = (len(q1_tokens) + len(q2_tokens)) / 2 |
|
|
|
|
|
strs = list(distance.lcsubstrings(q1, q2)) |
|
if strs: |
|
length_features[2] = len(strs[0]) / (min(len(q1), len(q2)) + 1) |
|
else: |
|
length_features[2] = 0.0 |
|
|
|
return length_features |
|
|
|
|
|
from fuzzywuzzy import fuzz |
|
|
|
def fetch_fuzzy_features(row): |
|
|
|
q1 = row['question1'] |
|
q2 = row['question2'] |
|
|
|
fuzzy_features = [0.0]*4 |
|
|
|
|
|
fuzzy_features[0] = fuzz.QRatio(q1, q2) |
|
|
|
|
|
fuzzy_features[1] = fuzz.partial_ratio(q1, q2) |
|
|
|
|
|
fuzzy_features[2] = fuzz.token_sort_ratio(q1, q2) |
|
|
|
|
|
fuzzy_features[3] = fuzz.token_set_ratio(q1, q2) |
|
|
|
return fuzzy_features |
|
|
|
def all_prep(df): |
|
df['q1_len']=df['question1'].str.len() |
|
df['q2_len']=df['question2'].str.len() |
|
|
|
df['q1_num_words']=df['question1'].apply(lambda row: len(row.split(" "))) |
|
df['q2_num_words']=df['question2'].apply(lambda row: len(row.split(" "))) |
|
|
|
df['word_common']=df.apply(common_words,axis=1) |
|
df['word_total']=df.apply(total_words,axis=1) |
|
df['word_share']=round(df['word_common']/df['word_total'],2) |
|
|
|
token_features = df.apply(fetch_token_features, axis=1) |
|
df["cwc_min"] = list(map(lambda x: x[0], token_features)) |
|
df["cwc_max"] = list(map(lambda x: x[1], token_features)) |
|
df["csc_min"] = list(map(lambda x: x[2], token_features)) |
|
df["csc_max"] = list(map(lambda x: x[3], token_features)) |
|
df["ctc_min"] = list(map(lambda x: x[4], token_features)) |
|
df["ctc_max"] = list(map(lambda x: x[5], token_features)) |
|
df["last_word_eq"] = list(map(lambda x: x[6], token_features)) |
|
df["first_word_eq"] = list(map(lambda x: x[7], token_features)) |
|
|
|
length_features = df.apply(fetch_length_features, axis=1) |
|
df['abs_len_diff'] = list(map(lambda x: x[0], length_features)) |
|
df['mean_len'] = list(map(lambda x: x[1], length_features)) |
|
df['longest_substr_ratio'] = list(map(lambda x: x[2], length_features)) |
|
|
|
fuzzy_features = df.apply(fetch_fuzzy_features, axis=1) |
|
df['fuzz_ratio'] = list(map(lambda x: x[0], fuzzy_features)) |
|
df['fuzz_partial_ratio'] = list(map(lambda x: x[1], fuzzy_features)) |
|
df['token_sort_ratio'] = list(map(lambda x: x[2], fuzzy_features)) |
|
df['token_set_ratio'] = list(map(lambda x: x[3], fuzzy_features)) |
|
|
|
ndf2=df.drop(columns=['question1','question2']) |
|
import pickle |
|
import numpy as np |
|
with open("BOW.pkl", 'rb') as file: |
|
cv = pickle.load(file) |
|
|
|
questions=list(df['question1'])+list(df['question2']) |
|
q1_arr,q2_arr=np.vsplit(cv.transform(questions).toarray(),2) |
|
temp_df=pd.concat([pd.DataFrame(q1_arr,index=ndf2.index),pd.DataFrame(q2_arr,index=ndf2.index)],axis=1) |
|
temp_df=pd.concat([ndf2,temp_df],axis=1) |
|
temp_df.columns = temp_df.columns.astype(str) |
|
|
|
return temp_df |
|
|
|
|
|
def clear_text(): |
|
st.session_state["text1"] = "" |
|
st.session_state["text2"] = "" |
|
|
|
|
|
def main(): |
|
st.title('Duplicate Question Detection (Approach 1)') |
|
st.write("Feature Engineering, BOW , Random Forest") |
|
|
|
q1 = st.text_input("Enter Question1", key="text1") |
|
q2 = st.text_input("Enter Question2", key="text2") |
|
|
|
data=[] |
|
df = pd.DataFrame(data) |
|
df['question1']=[preprocess(q1)] |
|
df['question2']=[preprocess(q2)] |
|
with open("RF.pkl", 'rb') as file: |
|
rf = pickle.load(file) |
|
|
|
if st.button('Find'): |
|
z=rf.predict(all_prep(df))[0] |
|
if z==1: |
|
st.success("Duplicate") |
|
else: |
|
st.success("Not Duplicate") |
|
st.button("Clear", on_click=clear_text) |
|
|
|
|
|
if __name__=='__main__': |
|
main() |
|
|