gyanbardhan123's picture
Update app.py
e227943 verified
import os
import pandas as pd
import numpy as np
import streamlit as st
import re
import pickle
def preprocess(q):
q=str(q).lower().strip()
q=q.replace('%',' percent ')
q=q.replace('@',' at ')
q=q.replace('$',' dollar ')
q=q.replace('[math]','')
q=q.replace(',000,000,000 ','b ')
q=q.replace(',000,000 ','m ')
q=q.replace(',000 ','k ')
import re
q=re.sub(r'([0-9]+)000000000',r'\1b',q)
q=re.sub(r'([0-9]+)000000',r'\1m',q)
q=re.sub(r'([0-9]+)000',r'\1k',q)
contractions = {
"ain't": "am not",
"aren't": "are not",
"can't": "can not",
"can't've": "can not have",
"'cause": "because",
"could've": "could have",
"couldn't": "could not",
"couldn't've": "could not have",
"didn't": "did not",
"doesn't": "does not",
"don't": "do not",
"hadn't": "had not",
"hadn't've": "had not have",
"hasn't": "has not",
"haven't": "have not",
"he'd": "he would",
"he'd've": "he would have",
"he'll": "he will",
"he'll've": "he will have",
"he's": "he is",
"how'd": "how did",
"how'd'y": "how do you",
"how'll": "how will",
"how's": "how is",
"i'd": "i would",
"i'd've": "i would have",
"i'll": "i will",
"i'll've": "i will have",
"i'm": "i am",
"i've": "i have",
"isn't": "is not",
"it'd": "it would",
"it'd've": "it would have",
"it'll": "it will",
"it'll've": "it will have",
"it's": "it is",
"let's": "let us",
"ma'am": "madam",
"mayn't": "may not",
"might've": "might have",
"mightn't": "might not",
"mightn't've": "might not have",
"must've": "must have",
"mustn't": "must not",
"mustn't've": "must not have",
"needn't": "need not",
"needn't've": "need not have",
"o'clock": "of the clock",
"oughtn't": "ought not",
"oughtn't've": "ought not have",
"shan't": "shall not",
"sha'n't": "shall not",
"shan't've": "shall not have",
"she'd": "she would",
"she'd've": "she would have",
"she'll": "she will",
"she'll've": "she will have",
"she's": "she is",
"should've": "should have",
"shouldn't": "should not",
"shouldn't've": "should not have",
"so've": "so have",
"so's": "so as",
"that'd": "that would",
"that'd've": "that would have",
"that's": "that is",
"there'd": "there would",
"there'd've": "there would have",
"there's": "there is",
"they'd": "they would",
"they'd've": "they would have",
"they'll": "they will",
"they'll've": "they will have",
"they're": "they are",
"they've": "they have",
"to've": "to have",
"wasn't": "was not",
"we'd": "we would",
"we'd've": "we would have",
"we'll": "we will",
"we'll've": "we will have",
"we're": "we are",
"we've": "we have",
"weren't": "were not",
"what'll": "what will",
"what'll've": "what will have",
"what're": "what are",
"what's": "what is",
"what've": "what have",
"when's": "when is",
"when've": "when have",
"where'd": "where did",
"where's": "where is",
"where've": "where have",
"who'll": "who will",
"who'll've": "who will have",
"who's": "who is",
"who've": "who have",
"why's": "why is",
"why've": "why have",
"will've": "will have",
"won't": "will not",
"won't've": "will not have",
"would've": "would have",
"wouldn't": "would not",
"wouldn't've": "would not have",
"y'all": "you all",
"y'all'd": "you all would",
"y'all'd've": "you all would have",
"y'all're": "you all are",
"y'all've": "you all have",
"you'd": "you would",
"you'd've": "you would have",
"you'll": "you will",
"you'll've": "you will have",
"you're": "you are",
"you've": "you have"
}
q_decontracted = []
for word in q.split():
if word in contractions:
word = contractions[word]
q_decontracted.append(word)
q = ' '.join(q_decontracted)
q = q.replace("'ve", " have")
q = q.replace("n't", " not")
q = q.replace("'re", " are")
q = q.replace("'ll", " will")
q=re.sub(re.compile('<.*?>'),'',q)
import string
q=q.translate(str.maketrans('', '', string.punctuation))
return q
def common_words(row):
w1=set(map(lambda word: word.lower().strip(),row['question1'].split(" ")))
w2=set(map(lambda word: word.lower().strip(),row['question2'].split(" ")))
return len(w1 & w2)
def total_words(row):
w1=set(map(lambda word: word.lower().strip(),row['question1'].split(" ")))
w2=set(map(lambda word: word.lower().strip(),row['question2'].split(" ")))
return len(w1) + len(w2)
import nltk
nltk.download("stopwords")
from nltk.corpus import stopwords
def fetch_token_features(row):
q1 = row['question1']
q2 = row['question2']
SAFE_DIV = 0.0001
STOP_WORDS = stopwords.words("english")
token_features = [0.0]*8
# Converting the Sentence into Tokens:
q1_tokens = q1.split()
q2_tokens = q2.split()
if len(q1_tokens) == 0 or len(q2_tokens) == 0:
return token_features
# Get the non-stopwords in Questions
q1_words = set([word for word in q1_tokens if word not in STOP_WORDS])
q2_words = set([word for word in q2_tokens if word not in STOP_WORDS])
#Get the stopwords in Questions
q1_stops = set([word for word in q1_tokens if word in STOP_WORDS])
q2_stops = set([word for word in q2_tokens if word in STOP_WORDS])
# Get the common non-stopwords from Question pair
common_word_count = len(q1_words.intersection(q2_words))
# Get the common stopwords from Question pair
common_stop_count = len(q1_stops.intersection(q2_stops))
# Get the common Tokens from Question pair
common_token_count = len(set(q1_tokens).intersection(set(q2_tokens)))
token_features[0] = common_word_count / (min(len(q1_words), len(q2_words)) + SAFE_DIV)
token_features[1] = common_word_count / (max(len(q1_words), len(q2_words)) + SAFE_DIV)
token_features[2] = common_stop_count / (min(len(q1_stops), len(q2_stops)) + SAFE_DIV)
token_features[3] = common_stop_count / (max(len(q1_stops), len(q2_stops)) + SAFE_DIV)
token_features[4] = common_token_count / (min(len(q1_tokens), len(q2_tokens)) + SAFE_DIV)
token_features[5] = common_token_count / (max(len(q1_tokens), len(q2_tokens)) + SAFE_DIV)
# Last word of both question is same or not
token_features[6] = int(q1_tokens[-1] == q2_tokens[-1])
# First word of both question is same or not
token_features[7] = int(q1_tokens[0] == q2_tokens[0])
return token_features
import distance
def fetch_length_features(row):
q1 = row['question1']
q2 = row['question2']
length_features = [0.0]*3
# Converting the Sentence into Tokens:
q1_tokens = q1.split()
q2_tokens = q2.split()
if len(q1_tokens) == 0 or len(q2_tokens) == 0:
return length_features
# Absolute length features
length_features[0] = abs(len(q1_tokens) - len(q2_tokens))
# Average Token Length of both Questions
length_features[1] = (len(q1_tokens) + len(q2_tokens)) / 2
# Find the longest common substring
strs = list(distance.lcsubstrings(q1, q2))
if strs:
length_features[2] = len(strs[0]) / (min(len(q1), len(q2)) + 1)
else:
length_features[2] = 0.0
return length_features
# Fuzzy Features
from fuzzywuzzy import fuzz
def fetch_fuzzy_features(row):
q1 = row['question1']
q2 = row['question2']
fuzzy_features = [0.0]*4
# fuzz_ratio
fuzzy_features[0] = fuzz.QRatio(q1, q2)
# fuzz_partial_ratio
fuzzy_features[1] = fuzz.partial_ratio(q1, q2)
# token_sort_ratio
fuzzy_features[2] = fuzz.token_sort_ratio(q1, q2)
# token_set_ratio
fuzzy_features[3] = fuzz.token_set_ratio(q1, q2)
return fuzzy_features
def all_prep(df):
df['q1_len']=df['question1'].str.len()
df['q2_len']=df['question2'].str.len()
df['q1_num_words']=df['question1'].apply(lambda row: len(row.split(" ")))
df['q2_num_words']=df['question2'].apply(lambda row: len(row.split(" ")))
df['word_common']=df.apply(common_words,axis=1)
df['word_total']=df.apply(total_words,axis=1)
df['word_share']=round(df['word_common']/df['word_total'],2)
token_features = df.apply(fetch_token_features, axis=1)
df["cwc_min"] = list(map(lambda x: x[0], token_features))
df["cwc_max"] = list(map(lambda x: x[1], token_features))
df["csc_min"] = list(map(lambda x: x[2], token_features))
df["csc_max"] = list(map(lambda x: x[3], token_features))
df["ctc_min"] = list(map(lambda x: x[4], token_features))
df["ctc_max"] = list(map(lambda x: x[5], token_features))
df["last_word_eq"] = list(map(lambda x: x[6], token_features))
df["first_word_eq"] = list(map(lambda x: x[7], token_features))
length_features = df.apply(fetch_length_features, axis=1)
df['abs_len_diff'] = list(map(lambda x: x[0], length_features))
df['mean_len'] = list(map(lambda x: x[1], length_features))
df['longest_substr_ratio'] = list(map(lambda x: x[2], length_features))
fuzzy_features = df.apply(fetch_fuzzy_features, axis=1)
df['fuzz_ratio'] = list(map(lambda x: x[0], fuzzy_features))
df['fuzz_partial_ratio'] = list(map(lambda x: x[1], fuzzy_features))
df['token_sort_ratio'] = list(map(lambda x: x[2], fuzzy_features))
df['token_set_ratio'] = list(map(lambda x: x[3], fuzzy_features))
ndf2=df.drop(columns=['question1','question2'])
import pickle
import numpy as np
with open("BOW.pkl", 'rb') as file:
cv = pickle.load(file)
questions=list(df['question1'])+list(df['question2'])
q1_arr,q2_arr=np.vsplit(cv.transform(questions).toarray(),2)
temp_df=pd.concat([pd.DataFrame(q1_arr,index=ndf2.index),pd.DataFrame(q2_arr,index=ndf2.index)],axis=1)
temp_df=pd.concat([ndf2,temp_df],axis=1)
temp_df.columns = temp_df.columns.astype(str)
return temp_df
def clear_text():
st.session_state["text1"] = ""
st.session_state["text2"] = ""
def main():
st.title('Duplicate Question Detection (Approach 1)')
st.write("Feature Engineering, BOW , Random Forest")
q1 = st.text_input("Enter Question1", key="text1")
q2 = st.text_input("Enter Question2", key="text2")
data=[]
df = pd.DataFrame(data)
df['question1']=[preprocess(q1)]
df['question2']=[preprocess(q2)]
with open("RF.pkl", 'rb') as file:
rf = pickle.load(file)
if st.button('Find'):
z=rf.predict(all_prep(df))[0]
if z==1:
st.success("Duplicate")
else:
st.success("Not Duplicate")
st.button("Clear", on_click=clear_text)
if __name__=='__main__':
main()