photoguard / utils.py
hadisalman's picture
Add demo
50b15cd
raw
history blame
1.79 kB
import torch
import numpy as np
import torch
from PIL import Image, ImageOps
from torchvision.transforms import ToPILImage, ToTensor
totensor = ToTensor()
topil = ToPILImage()
def resize_and_crop(img, size, crop_type="center"):
'''Resize and crop the image to the given size.'''
if crop_type == "top":
center = (0, 0)
elif crop_type == "center":
center = (0.5, 0.5)
else:
raise ValueError
resize = list(size)
if size[0] is None:
resize[0] = img.size[0]
if size[1] is None:
resize[1] = img.size[1]
return ImageOps.fit(img, resize, centering=center)
def recover_image(image, init_image, mask, background=False):
image = totensor(image)
mask = totensor(mask)[0]
init_image = totensor(init_image)
if background:
result = mask * init_image + (1 - mask) * image
else:
result = mask * image + (1 - mask) * init_image
return topil(result)
def preprocess(image):
w, h = image.size
w, h = map(lambda x: x - x % 32, (w, h)) # resize to integer multiple of 32
image = image.resize((w, h), resample=Image.LANCZOS)
image = np.array(image).astype(np.float32) / 255.0
image = image[None].transpose(0, 3, 1, 2)
image = torch.from_numpy(image)
return 2.0 * image - 1.0
def prepare_mask_and_masked_image(image, mask):
image = np.array(image.convert("RGB"))
image = image[None].transpose(0, 3, 1, 2)
image = torch.from_numpy(image).to(dtype=torch.float32) / 127.5 - 1.0
mask = np.array(mask.convert("L"))
mask = mask.astype(np.float32) / 255.0
mask = mask[None, None]
mask[mask < 0.5] = 0
mask[mask >= 0.5] = 1
mask = torch.from_numpy(mask)
masked_image = image * (mask < 0.5)
return mask, masked_image