Spaces:
Running
Running
import torch | |
import torch.nn.functional as F | |
from typing import Dict, Tuple, Optional | |
import network | |
class Predictor: | |
""" | |
Wrapper for ScribblePrompt Unet model | |
""" | |
def __init__(self, path: str, verbose: bool = False): | |
self.verbose = verbose | |
assert path.exists(), f"Checkpoint {path} does not exist" | |
self.path = path | |
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
self.build_model() | |
self.load() | |
self.model.eval() | |
self.to_device() | |
def build_model(self): | |
""" | |
Build the model | |
""" | |
self.model = network.UNet( | |
in_channels = 5, | |
out_channels = 1, | |
features = [192, 192, 192, 192], | |
) | |
def load(self): | |
""" | |
Load the state of the model from a checkpoint file. | |
""" | |
with (self.path).open("rb") as f: | |
state = torch.load(f, map_location=self.device) | |
self.model.load_state_dict(state, strict=True) | |
if self.verbose: | |
print( | |
f"Loaded checkpoint from {self.path} to {self.device}" | |
) | |
def to_device(self): | |
""" | |
Move the model to cpu or gpu | |
""" | |
self.device = "cuda" if torch.cuda.is_available() else "cpu" | |
self.model = self.model.to(self.device) | |
def predict(self, prompts: Dict[str,any], img_features: Optional[torch.Tensor] = None, multimask_mode: bool = False): | |
""" | |
Make predictions! | |
Returns: | |
mask (torch.Tensor): H x W | |
img_features (torch.Tensor): B x 1 x H x W (for SAM models) | |
low_res_mask (torch.Tensor): B x 1 x H x W logits | |
""" | |
if self.verbose: | |
print("point_coords", prompts.get("point_coords", None)) | |
print("point_labels", prompts.get("point_labels", None)) | |
print("box", prompts.get("box", None)) | |
print("img", prompts.get("img").shape, prompts.get("img").min(), prompts.get("img").max()) | |
if prompts.get("scribble") is not None: | |
print("scribble", prompts.get("scribble", None).shape, prompts.get("scribble").min(), prompts.get("scribble").max()) | |
original_shape = prompts.get('img').shape[-2:] | |
# Rescale to 128 x 128 | |
prompts = rescale_inputs(prompts) | |
# Prepare inputs for ScribblePrompt unet (1 x 5 x 128 x 128) | |
x = prepare_inputs(prompts).float() | |
with torch.no_grad(): | |
yhat = self.model(x.to(self.device)).cpu() | |
mask = torch.sigmoid(yhat) | |
# Resize for app resolution | |
mask = F.interpolate(mask, size=original_shape, mode='bilinear').squeeze() | |
# mask: H x W, yhat: 1 x 1 x H x W | |
return mask, None, yhat | |
# ----------------------------------------------------------------------------- | |
# Prepare inputs | |
# ----------------------------------------------------------------------------- | |
def rescale_inputs(inputs: Dict[str,any], res=128): | |
""" | |
Rescale the inputs | |
""" | |
h,w = inputs['img'].shape[-2:] | |
if h != res or w != res: | |
inputs.update(dict( | |
img = F.interpolate(inputs['img'], size=(res,res), mode='bilinear') | |
)) | |
if inputs.get('scribble') is not None: | |
inputs.update({ | |
'scribble': F.interpolate(inputs['scribble'], size=(res,res), mode='bilinear') | |
}) | |
if inputs.get("box") is not None: | |
boxes = inputs.get("box").clone() | |
coords = boxes.reshape(-1, 2, 2) | |
coords[..., 0] = coords[..., 0] * (res / w) | |
coords[..., 1] = coords[..., 1] * (res / h) | |
inputs.update({'box': coords.reshape(1, -1, 4).int()}) | |
if inputs.get("point_coords") is not None: | |
coords = inputs.get("point_coords").clone() | |
coords[..., 0] = coords[..., 0] * (res / w) | |
coords[..., 1] = coords[..., 1] * (res / h) | |
inputs.update({'point_coords': coords.int()}) | |
return inputs | |
def prepare_inputs(inputs: Dict[str,torch.Tensor], device = None) -> torch.Tensor: | |
""" | |
Prepare inputs for ScribblePrompt Unet | |
Returns: | |
x (torch.Tensor): B x 5 x H x W | |
""" | |
img = inputs['img'] | |
if device is None: | |
device = img.device | |
img = img.to(device) | |
shape = tuple(img.shape[-2:]) | |
if inputs.get("box") is not None: | |
# Embed bounding box | |
# Input: B x 1 x 4 | |
# Output: B x 1 x H x W | |
box_embed = bbox_shaded(inputs['box'], shape=shape, device=device) | |
else: | |
box_embed = torch.zeros(img.shape, device=device) | |
if inputs.get("point_coords") is not None: | |
# Encode points | |
# B x 2 x H x W | |
scribble_click_embed = click_onehot(inputs['point_coords'], inputs['point_labels'], shape=shape) | |
else: | |
scribble_click_embed = torch.zeros((img.shape[0], 2) + shape, device=device) | |
if inputs.get("scribble") is not None: | |
# Combine scribbles with click encoding | |
# B x 2 x H x W | |
scribble_click_embed = torch.clamp(scribble_click_embed + inputs.get('scribble'), min=0.0, max=1.0) | |
if inputs.get('mask_input') is not None: | |
# Previous prediction | |
mask_input = inputs['mask_input'] | |
else: | |
# Initialize empty channel for mask input | |
mask_input = torch.zeros(img.shape, device=img.device) | |
x = torch.cat((img, box_embed, scribble_click_embed, mask_input), dim=-3) | |
# B x 5 x H x W | |
return x | |
# ----------------------------------------------------------------------------- | |
# Encode clicks and bounding boxes | |
# ----------------------------------------------------------------------------- | |
def click_onehot(point_coords, point_labels, shape: Tuple[int,int] = (128,128), indexing='xy'): | |
""" | |
Represent clicks as two HxW binary masks (one for positive clicks and one for negative) | |
with 1 at the click locations and 0 otherwise | |
Args: | |
point_coords (torch.Tensor): BxNx2 tensor of xy coordinates | |
point_labels (torch.Tensor): BxN tensor of labels (0 or 1) | |
shape (tuple): output shape | |
Returns: | |
embed (torch.Tensor): Bx2xHxW tensor | |
""" | |
assert indexing in ['xy','uv'], f"Invalid indexing: {indexing}" | |
assert len(point_coords.shape) == 3, "point_coords must be BxNx2" | |
assert point_coords.shape[-1] == 2, "point_coords must be BxNx2" | |
assert point_labels.shape[-1] == point_coords.shape[1], "point_labels must be BxN" | |
assert len(shape)==2, f"shape must be 2D: {shape}" | |
device = point_coords.device | |
batch_size = point_coords.shape[0] | |
n_points = point_coords.shape[1] | |
embed = torch.zeros((batch_size,2)+shape, device=device) | |
labels = point_labels.flatten().float() | |
idx_coords = torch.cat(( | |
torch.arange(batch_size, device=device).reshape(-1,1).repeat(1,n_points)[...,None], | |
point_coords | |
), axis=2).reshape(-1,3) | |
if indexing=='xy': | |
embed[ idx_coords[:,0], 0, idx_coords[:,2], idx_coords[:,1] ] = labels | |
embed[ idx_coords[:,0], 1, idx_coords[:,2], idx_coords[:,1] ] = 1.0-labels | |
else: | |
embed[ idx_coords[:,0], 0, idx_coords[:,1], idx_coords[:,2] ] = labels | |
embed[ idx_coords[:,0], 1, idx_coords[:,1], idx_coords[:,2] ] = 1.0-labels | |
return embed | |
def bbox_shaded(boxes, shape: Tuple[int,int] = (128,128), device='cpu'): | |
""" | |
Represent bounding boxes as a binary mask with 1 inside boxes and 0 otherwise | |
Args: | |
boxes (torch.Tensor): Bx1x4 [x1, y1, x2, y2] | |
Returns: | |
bbox_embed (torch.Tesor): Bx1xHxW according to shape | |
""" | |
assert len(shape)==2, "shape must be 2D" | |
if isinstance(boxes, torch.Tensor): | |
boxes = boxes.int().cpu().numpy() | |
batch_size = boxes.shape[0] | |
n_boxes = boxes.shape[1] | |
bbox_embed = torch.zeros((batch_size,1)+tuple(shape), device=device, dtype=torch.float32) | |
if boxes is not None: | |
for i in range(batch_size): | |
for j in range(n_boxes): | |
x1, y1, x2, y2 = boxes[i,j,:] | |
x_min = min(x1,x2) | |
x_max = max(x1,x2) | |
y_min = min(y1,y2) | |
y_max = max(y1,y2) | |
bbox_embed[ i, 0, y_min:y_max, x_min:x_max ] = 1.0 | |
return bbox_embed |