|
|
|
import os |
|
import pytest |
|
import torch |
|
import open_clip |
|
import util_test |
|
|
|
os.environ['CUDA_VISIBLE_DEVICES'] = '' |
|
|
|
models_to_test = set(open_clip.list_models()) |
|
|
|
|
|
models_to_test = models_to_test.difference({ |
|
|
|
|
|
'convnext_xlarge', |
|
'convnext_xxlarge', |
|
'convnext_xxlarge_320', |
|
'vit_medium_patch16_gap_256', |
|
|
|
'ViT-bigG-14', |
|
'ViT-e-14', |
|
'mt5-xl-ViT-H-14', |
|
}) |
|
|
|
if 'OPEN_CLIP_TEST_REG_MODELS' in os.environ: |
|
external_model_list = os.environ['OPEN_CLIP_TEST_REG_MODELS'] |
|
with open(external_model_list, 'r') as f: |
|
models_to_test = set(f.read().splitlines()).intersection(models_to_test) |
|
print(f"Selected models from {external_model_list}: {models_to_test}") |
|
|
|
models_to_test = list(models_to_test) |
|
models_to_test.sort() |
|
|
|
@pytest.mark.regression_test |
|
@pytest.mark.parametrize('model_name', models_to_test) |
|
def test_inference_with_data( |
|
model_name, |
|
pretrained = None, |
|
pretrained_hf = False, |
|
precision = 'fp32', |
|
jit = False, |
|
force_quick_gelu = False, |
|
): |
|
util_test.seed_all() |
|
model, _, preprocess_val = open_clip.create_model_and_transforms( |
|
model_name, |
|
pretrained = pretrained, |
|
precision = precision, |
|
jit = jit, |
|
force_quick_gelu = force_quick_gelu, |
|
pretrained_hf = pretrained_hf |
|
) |
|
model_id = f'{model_name}_{pretrained or pretrained_hf}_{precision}' |
|
input_dir, output_dir = util_test.get_data_dirs() |
|
|
|
input_text_path = os.path.join(input_dir, 'random_text.pt') |
|
gt_text_path = os.path.join(output_dir, f'{model_id}_random_text.pt') |
|
if not os.path.isfile(input_text_path): |
|
pytest.skip(reason = f"missing test data, expected at {input_text_path}") |
|
if not os.path.isfile(gt_text_path): |
|
pytest.skip(reason = f"missing test data, expected at {gt_text_path}") |
|
input_text = torch.load(input_text_path) |
|
gt_text = torch.load(gt_text_path) |
|
y_text = util_test.inference_text(model, model_name, input_text) |
|
assert (y_text == gt_text).all(), f"text output differs @ {input_text_path}" |
|
|
|
image_size = model.visual.image_size |
|
if not isinstance(image_size, tuple): |
|
image_size = (image_size, image_size) |
|
input_image_path = os.path.join(input_dir, f'random_image_{image_size[0]}_{image_size[1]}.pt') |
|
gt_image_path = os.path.join(output_dir, f'{model_id}_random_image.pt') |
|
if not os.path.isfile(input_image_path): |
|
pytest.skip(reason = f"missing test data, expected at {input_image_path}") |
|
if not os.path.isfile(gt_image_path): |
|
pytest.skip(reason = f"missing test data, expected at {gt_image_path}") |
|
input_image = torch.load(input_image_path) |
|
gt_image = torch.load(gt_image_path) |
|
y_image = util_test.inference_image(model, preprocess_val, input_image) |
|
assert (y_image == gt_image).all(), f"image output differs @ {input_image_path}" |
|
|
|
|
|
|