|
# Prepare Datasets for CAT-Seg |
|
|
|
A dataset can be used by accessing [DatasetCatalog](https://detectron2.readthedocs.io/modules/data.html#detectron2.data.DatasetCatalog) |
|
for its data, or [MetadataCatalog](https://detectron2.readthedocs.io/modules/data.html#detectron2.data.MetadataCatalog) for its metadata (class names, etc). |
|
This document explains how to setup the builtin datasets so they can be used by the above APIs. |
|
[Use Custom Datasets](https://detectron2.readthedocs.io/tutorials/datasets.html) gives a deeper dive on how to use `DatasetCatalog` and `MetadataCatalog`, |
|
and how to add new datasets to them. |
|
|
|
CAT-Seg has builtin support for a few datasets. |
|
The datasets are assumed to exist in a directory specified by the environment variable |
|
`DETECTRON2_DATASETS`. |
|
Under this directory, detectron2 will look for datasets in the structure described below, if needed. |
|
``` |
|
$DETECTRON2_DATASETS/ |
|
coco/ # COCO-Stuff |
|
ADEChallengeData2016/ # ADE20K-150 |
|
ADE20K_2021_17_01/ # ADE20K-847 |
|
VOCdevkit/ |
|
VOC2010/ # PASCAL Context |
|
VOC2012/ # PASCAL VOC |
|
``` |
|
|
|
You can set the location for builtin datasets by `export DETECTRON2_DATASETS=/path/to/datasets`. |
|
If left unset, the default is `./datasets` relative to your current working directory. |
|
|
|
## Prepare data for [COCO-Stuff](https://github.com/nightrome/cocostuff): |
|
|
|
### Expected data structure |
|
|
|
``` |
|
coco-stuff/ |
|
annotations/ |
|
train2017/ |
|
val2017/ |
|
images/ |
|
train2017/ |
|
val2017/ |
|
# below are generated by prepare_coco_stuff.py |
|
annotations_detectron2/ |
|
train2017/ |
|
val2017/ |
|
``` |
|
Download the COCO (2017) images from https://cocodataset.org/ |
|
|
|
```bash |
|
wget http://images.cocodataset.org/zips/train2017.zip |
|
wget http://images.cocodataset.org/zips/val2017.zip |
|
``` |
|
|
|
Download the COCO-Stuff annotation from https://github.com/nightrome/cocostuff. |
|
```bash |
|
wget http://calvin.inf.ed.ac.uk/wp-content/uploads/data/cocostuffdataset/stuffthingmaps_trainval2017.zip |
|
``` |
|
Unzip `train2017.zip`, `val2017.zip`, and `stuffthingmaps_trainval2017.zip`. Then put them to the correct location listed above. |
|
|
|
Generate the labels for training and testing. |
|
|
|
``` |
|
python datasets/prepare_coco_stuff.py |
|
``` |
|
|
|
|
|
|
|
## Prepare data for [ADE20K-150](http://sceneparsing.csail.mit.edu): |
|
|
|
### Expected data structure |
|
``` |
|
ADEChallengeData2016/ |
|
annotations/ |
|
validation/ |
|
images/ |
|
validation/ |
|
# below are generated by prepare_ade20k_150.py |
|
annotations_detectron2/ |
|
validation/ |
|
``` |
|
Download the data of ADE20K-150 from http://sceneparsing.csail.mit.edu. |
|
``` |
|
wget http://data.csail.mit.edu/places/ADEchallenge/ADEChallengeData2016.zip |
|
``` |
|
Unzip `ADEChallengeData2016.zip` and generate the labels for testing. |
|
``` |
|
python datasets/prepare_ade20k_150.py |
|
``` |
|
## Prepare data for [ADE20k-847](https://groups.csail.mit.edu/vision/datasets/ADE20K/): |
|
|
|
### Expected data structure |
|
``` |
|
ADE20K_2021_17_01/ |
|
images/ |
|
ADE/ |
|
validation/ |
|
index_ade20k.mat |
|
index_ade20k.pkl |
|
# below are generated by prepare_ade20k_847.py |
|
annotations_detectron2/ |
|
validation/ |
|
``` |
|
Download the data of ADE20k-Full from https://groups.csail.mit.edu/vision/datasets/ADE20K/request_data/ |
|
Unzip the dataset and generate the labels for testing. |
|
``` |
|
python datasets/prepare_ade20k_847.py |
|
``` |
|
|
|
## Prepare data for [PASCAL VOC 2012](http://host.robots.ox.ac.uk/pascal/VOC/voc2012/#devkit): |
|
|
|
|
|
### Expected data structure |
|
``` |
|
VOCdevkit/ |
|
VOC2012/ |
|
Annotations/ |
|
ImageSets/ |
|
JPEGImages/ |
|
SegmentationClass/ |
|
SegmentationClassAug/ |
|
SegmentationObject/ |
|
# below are generated by prepare_voc.py |
|
annotations_detectron2 |
|
annotations_detectron2_bg |
|
|
|
``` |
|
Download the data of PASCAL VOC from http://host.robots.ox.ac.uk/pascal/VOC/voc2012/#devkit. |
|
|
|
We use SBD augmentated training data as SegmentationClassAug following [Deeplab](https://github.com/kazuto1011/deeplab-pytorch/blob/master/data/datasets/voc12/README.md). |
|
``` |
|
wget http://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCtrainval_11-May-2012.tar |
|
wget https://www.dropbox.com/s/oeu149j8qtbs1x0/SegmentationClassAug.zip |
|
``` |
|
Unzip `VOCtrainval_11-May-2012.tar` and `SegmentationClassAug.zip`. Then put them to the correct location listed above and generate the labels for testing. |
|
``` |
|
python datasets/prepare_voc.py |
|
``` |
|
|
|
|
|
## Prepare data for [PASCAL Context](https://www.cs.stanford.edu/~roozbeh/pascal-context/): |
|
|
|
|
|
### Expected data structure |
|
``` |
|
VOCdevkit/ |
|
VOC2010/ |
|
Annotations/ |
|
ImageSets/ |
|
JPEGImages/ |
|
SegmentationClass/ |
|
SegmentationObject/ |
|
trainval/ |
|
labels.txt |
|
59_labels.txt |
|
pascalcontext_val.txt |
|
# below are generated by prepare_pascal_context.py |
|
annotations_detectron2/ |
|
pc459_val |
|
pc59_val |
|
``` |
|
Download the data of PASCAL VOC 2010 from https://www.cs.stanford.edu/~roozbeh/pascal-context/. |
|
|
|
``` |
|
wget http://host.robots.ox.ac.uk/pascal/VOC/voc2010/VOCtrainval_03-May-2010.tar |
|
wget https://www.cs.stanford.edu/~roozbeh/pascal-context/trainval.tar.gz |
|
wget https://www.cs.stanford.edu/~roozbeh/pascal-context/59_labels.txt |
|
``` |
|
Unzip `VOCtrainval_03-May-2010.tar` and `trainval.tar.gz`. Then put them to the correct location listed above and generate the labels for testing. |
|
``` |
|
python datasets/prepare_pascal_context.py |
|
``` |