Spaces:
Sleeping
Sleeping
Create model.py
Browse files
model.py
ADDED
@@ -0,0 +1,165 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import csv
|
2 |
+
import numpy as np
|
3 |
+
import pandas as pd
|
4 |
+
import matplotlib.pyplot as plt
|
5 |
+
from sklearn.model_selection import train_test_split, cross_val_score
|
6 |
+
from sklearn.ensemble import RandomForestClassifier
|
7 |
+
from sklearn.metrics import accuracy_score, confusion_matrix, classification_report, roc_curve, auc
|
8 |
+
|
9 |
+
from sklearn.utils import shuffle
|
10 |
+
from sklearn.model_selection import learning_curve
|
11 |
+
import gender_guesser.detector as gender
|
12 |
+
|
13 |
+
def read_datasets():
|
14 |
+
""" Reads users profile from csv files """
|
15 |
+
genuine_users = pd.read_csv("data/users.csv")
|
16 |
+
fake_users = pd.read_csv("data/fusers.csv")
|
17 |
+
x = pd.concat([genuine_users, fake_users])
|
18 |
+
y = [1] * len(genuine_users) + [0] * len(fake_users)
|
19 |
+
return x, y
|
20 |
+
|
21 |
+
def predict_sex(names):
|
22 |
+
sex_predictor = gender.Detector(case_sensitive=False)
|
23 |
+
sex_code = []
|
24 |
+
for name in names:
|
25 |
+
first_name = name.split(' ')[0]
|
26 |
+
sex = sex_predictor.get_gender(first_name)
|
27 |
+
if sex == 'female':
|
28 |
+
sex_code.append(2)
|
29 |
+
# elif sex == 'mostly_female':
|
30 |
+
# sex_code.append(-1)
|
31 |
+
elif sex == 'male':
|
32 |
+
sex_code.append(1)
|
33 |
+
# elif sex == 'mostly_male':
|
34 |
+
# sex_code.append(1)
|
35 |
+
else:
|
36 |
+
sex_code.append(0) # Assign a default value for unknown genders
|
37 |
+
return sex_code
|
38 |
+
|
39 |
+
def extract_features(x):
|
40 |
+
|
41 |
+
|
42 |
+
x['sex_code'] = predict_sex(x['name'])
|
43 |
+
|
44 |
+
feature_columns_to_use = ['statuses_count', 'followers_count', 'friends_count', 'favourites_count', 'listed_count', 'sex_code']
|
45 |
+
x = x[feature_columns_to_use]
|
46 |
+
return x
|
47 |
+
|
48 |
+
# Rest of your code...
|
49 |
+
|
50 |
+
|
51 |
+
|
52 |
+
def plot_learning_curve(estimator, title, X, y, ylim=None, cv=None, n_jobs=1, train_sizes=np.linspace(.1, 1.0, 5)):
|
53 |
+
plt.figure()
|
54 |
+
plt.title(title)
|
55 |
+
if ylim is not None:
|
56 |
+
plt.ylim(*ylim)
|
57 |
+
plt.xlabel("Training examples")
|
58 |
+
plt.ylabel("Score")
|
59 |
+
|
60 |
+
train_sizes, train_scores, test_scores = learning_curve(
|
61 |
+
estimator, X, y, cv=cv, n_jobs=n_jobs, train_sizes=train_sizes)
|
62 |
+
train_scores_mean = np.mean(train_scores, axis=1)
|
63 |
+
train_scores_std = np.std(train_scores, axis=1)
|
64 |
+
test_scores_mean = np.mean(test_scores, axis=1)
|
65 |
+
test_scores_std = np.std(test_scores, axis=1)
|
66 |
+
|
67 |
+
plt.grid()
|
68 |
+
plt.fill_between(train_sizes, train_scores_mean - train_scores_std,
|
69 |
+
train_scores_mean + train_scores_std, alpha=0.1,
|
70 |
+
color="r")
|
71 |
+
plt.fill_between(train_sizes, test_scores_mean - test_scores_std,
|
72 |
+
test_scores_mean + test_scores_std, alpha=0.1, color="g")
|
73 |
+
plt.plot(train_sizes, train_scores_mean, 'o-', color="r",
|
74 |
+
label="Training score")
|
75 |
+
plt.plot(train_sizes, test_scores_mean, 'o-', color="g",
|
76 |
+
label="Cross-validation score")
|
77 |
+
|
78 |
+
plt.legend(loc="best")
|
79 |
+
return plt
|
80 |
+
|
81 |
+
def plot_confusion_matrix(cm, title='Confusion matrix', cmap=plt.cm.Blues):
|
82 |
+
target_names=['Fake','Genuine']
|
83 |
+
plt.imshow(cm, interpolation='nearest', cmap=cmap)
|
84 |
+
plt.title(title)
|
85 |
+
plt.colorbar()
|
86 |
+
tick_marks = np.arange(len(target_names))
|
87 |
+
plt.xticks(tick_marks, target_names, rotation=45)
|
88 |
+
plt.yticks(tick_marks, target_names)
|
89 |
+
plt.tight_layout()
|
90 |
+
plt.ylabel('True label')
|
91 |
+
plt.xlabel('Predicted label')
|
92 |
+
|
93 |
+
def plot_roc_curve(y_test, y_pred):
|
94 |
+
false_positive_rate, true_positive_rate, thresholds = roc_curve(y_test, y_pred)
|
95 |
+
|
96 |
+
print("False Positive rate: ", false_positive_rate)
|
97 |
+
print("True Positive rate: ", true_positive_rate)
|
98 |
+
|
99 |
+
roc_auc = auc(false_positive_rate, true_positive_rate)
|
100 |
+
|
101 |
+
plt.title('Receiver Operating Characteristic')
|
102 |
+
plt.plot(false_positive_rate, true_positive_rate, 'b',
|
103 |
+
label='AUC = %0.2f' % roc_auc)
|
104 |
+
plt.legend(loc='lower right')
|
105 |
+
plt.plot([0, 1], [0, 1], 'r--')
|
106 |
+
plt.xlim([-0.1, 1.2])
|
107 |
+
plt.ylim([-0.1, 1.2])
|
108 |
+
plt.ylabel('True Positive Rate')
|
109 |
+
plt.xlabel('False Positive Rate')
|
110 |
+
plt.show()
|
111 |
+
|
112 |
+
def train(X_train, y_train, X_test):
|
113 |
+
""" Trains and predicts dataset with a Random Forest classifier """
|
114 |
+
clf = RandomForestClassifier(n_estimators=40, oob_score=True)
|
115 |
+
clf.fit(X_train, y_train)
|
116 |
+
print("The best classifier is: ", clf)
|
117 |
+
|
118 |
+
# Estimate score
|
119 |
+
scores = cross_val_score(clf, X_train, y_train, cv=5)
|
120 |
+
print(scores)
|
121 |
+
print('Estimated score: %0.5f (+/- %0.5f)' % (scores.mean(), scores.std() / 2))
|
122 |
+
|
123 |
+
title = 'Learning Curves (Random Forest)'
|
124 |
+
plot_learning_curve(clf, title, X_train, y_train, cv=5)
|
125 |
+
plt.show()
|
126 |
+
|
127 |
+
# Predict
|
128 |
+
y_pred = clf.predict(X_test)
|
129 |
+
import pickle
|
130 |
+
with open('data.pkl','wb') as file:
|
131 |
+
pickle.dump(clf,file)
|
132 |
+
return y_test, y_pred
|
133 |
+
|
134 |
+
print("Reading datasets...\n")
|
135 |
+
x, y = read_datasets()
|
136 |
+
x.describe()
|
137 |
+
|
138 |
+
print("Extracting features...\n")
|
139 |
+
x = extract_features(x)
|
140 |
+
print(x.columns)
|
141 |
+
print(x.describe())
|
142 |
+
|
143 |
+
print("Splitting datasets into train and test dataset...\n")
|
144 |
+
X_train, X_test, y_train, y_test = train_test_split(x, y, test_size=0.20, random_state=44)
|
145 |
+
|
146 |
+
print("Training datasets...\n")
|
147 |
+
y_test, y_pred = train(X_train, y_train, X_test)
|
148 |
+
|
149 |
+
print('Classification Accuracy on Test dataset: ', accuracy_score(y_test, y_pred))
|
150 |
+
|
151 |
+
|
152 |
+
|
153 |
+
cm = confusion_matrix(y_test, y_pred)
|
154 |
+
print('Confusion matrix, without normalization')
|
155 |
+
print(cm)
|
156 |
+
plot_confusion_matrix(cm)
|
157 |
+
|
158 |
+
cm_normalized = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
|
159 |
+
print('Normalized confusion matrix')
|
160 |
+
print(cm_normalized)
|
161 |
+
plot_confusion_matrix(cm_normalized, title='Normalized confusion matrix')
|
162 |
+
|
163 |
+
print(classification_report(y_test, y_pred, target_names=['Fake', 'Genuine']))
|
164 |
+
|
165 |
+
plot_roc_curve(y_test, y_pred)
|