Spaces:
Paused
Paused
File size: 14,784 Bytes
2091d9d 5fc9884 2091d9d 31b607a 2091d9d d51b2d2 2091d9d d51b2d2 2091d9d 2bf41dd 2091d9d d51b2d2 2091d9d d51b2d2 2091d9d d51b2d2 f6debc2 2091d9d d51b2d2 2091d9d d51b2d2 2091d9d d51b2d2 2091d9d a368971 2091d9d 9cdcb42 2091d9d d51b2d2 2091d9d bc10e06 d51b2d2 9cdcb42 d51b2d2 a28e570 d51b2d2 6bd8651 9cdcb42 6b09c44 6bd8651 9cdcb42 6b09c44 6bd8651 72e5969 6bd8651 9cdcb42 6bd8651 bad5e96 2091d9d 6bd8651 4e6b06e 466bbaf 4e6b06e 2091d9d 21fde4a 2091d9d d51b2d2 2091d9d 00fc93f 2091d9d 21fde4a 466bbaf 21fde4a 2091d9d e7039e8 2091d9d d51b2d2 2091d9d d51b2d2 2091d9d a28e570 2091d9d a28e570 2091d9d a28e570 2091d9d a81339e 2091d9d d51b2d2 2091d9d d51b2d2 2091d9d d51b2d2 2091d9d ee83503 d51b2d2 2091d9d 6bd8651 2091d9d bad5e96 6bd8651 6b09c44 6bd8651 bad5e96 6bd8651 6b09c44 2091d9d d51b2d2 6bd8651 2091d9d d51b2d2 2091d9d ef8a4ee 2091d9d 54511f0 2091d9d 094fe55 31b607a 75d592d 6b7bef0 6bd8651 6b7bef0 d51b2d2 6b7bef0 d51b2d2 6b7bef0 d51b2d2 6bd8651 d51b2d2 6bd8651 d51b2d2 6bd8651 2091d9d d51b2d2 6bd8651 d51b2d2 6bd8651 6b09c44 d51b2d2 46ea192 d51b2d2 46ea192 d51b2d2 6bd8651 d51b2d2 6bd8651 d51b2d2 46ea192 d51b2d2 2091d9d 46ea192 2091d9d 46ea192 2091d9d 10356b1 094fe55 10356b1 094fe55 10356b1 2091d9d 6bd8651 2091d9d d51b2d2 2091d9d d51b2d2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 |
import cv2
import torch
import random
import tempfile
import numpy as np
from pathlib import Path
from PIL import Image
from diffusers import (
ControlNetModel,
StableDiffusionXLControlNetPipeline,
UNet2DConditionModel,
EulerDiscreteScheduler,
)
import spaces
import gradio as gr
from huggingface_hub import hf_hub_download, snapshot_download
from ip_adapter import IPAdapterXL
from safetensors.torch import load_file
from rembg import remove
snapshot_download(
repo_id="h94/IP-Adapter", allow_patterns="sdxl_models/*", local_dir="."
)
# global variable
MAX_SEED = np.iinfo(np.int32).max
device = "cuda" if torch.cuda.is_available() else "cpu"
dtype = torch.float16 if str(device).__contains__("cuda") else torch.float32
# initialization
base_model_path = "stabilityai/stable-diffusion-xl-base-1.0"
image_encoder_path = "sdxl_models/image_encoder"
ip_ckpt = "sdxl_models/ip-adapter_sdxl.bin"
controlnet_path = "diffusers/controlnet-canny-sdxl-1.0"
controlnet = ControlNetModel.from_pretrained(
controlnet_path, use_safetensors=False, torch_dtype=torch.float16
).to(device)
# load SDXL lightnining
pipe = StableDiffusionXLControlNetPipeline.from_pretrained(
base_model_path,
controlnet=controlnet,
torch_dtype=torch.float16,
variant="fp16",
add_watermarker=False,
).to(device)
pipe.set_progress_bar_config(disable=True)
pipe.scheduler = EulerDiscreteScheduler.from_config(
pipe.scheduler.config, timestep_spacing="trailing", prediction_type="epsilon"
)
pipe.unet.load_state_dict(
load_file(
hf_hub_download(
"ByteDance/SDXL-Lightning", "sdxl_lightning_2step_unet.safetensors"
),
device="cuda",
)
)
# load ip-adapter
# target_blocks=["block"] for original IP-Adapter
# target_blocks=["up_blocks.0.attentions.1"] for style blocks only
# target_blocks = ["up_blocks.0.attentions.1", "down_blocks.2.attentions.1"] # for style+layout blocks
ip_model = IPAdapterXL(
pipe,
image_encoder_path,
ip_ckpt,
device,
target_blocks=["up_blocks.0.attentions.1"],
)
def segment(input_image):
# Convert PIL image to NumPy array
image_np = np.array(input_image)
# Remove background
image_np = remove(image_np)
# Convert back to PIL image
input_image = Image.fromarray(image_np)
return input_image
def resize_img(
input_image,
# max_side=1280,
# min_side=1024,
max_side=1024,
min_side=512,
size=None,
pad_to_max_side=False,
mode=Image.BILINEAR,
base_pixel_number=64,
):
w, h = input_image.size
if size is not None:
w_resize_new, h_resize_new = size
else:
ratio = min_side / min(h, w)
w, h = round(ratio * w), round(ratio * h)
ratio = max_side / max(h, w)
input_image = input_image.resize([round(ratio * w), round(ratio * h)], mode)
w_resize_new = (round(ratio * w) // base_pixel_number) * base_pixel_number
h_resize_new = (round(ratio * h) // base_pixel_number) * base_pixel_number
input_image = input_image.resize([w_resize_new, h_resize_new], mode)
if pad_to_max_side:
res = np.ones([max_side, max_side, 3], dtype=np.uint8) * 255
offset_x = (max_side - w_resize_new) // 2
offset_y = (max_side - h_resize_new) // 2
res[offset_y : offset_y + h_resize_new, offset_x : offset_x + w_resize_new] = (
np.array(input_image)
)
input_image = Image.fromarray(res)
return input_image
examples = [
[
"./asset/0.jpg",
None,
"3d render, 3d model, clean 3d style, cute space monster on mars, isolated clean white background, cinematic lighting",
1.0,
0.0,
0.0,
],
[
"./asset/zeichnung1.jpg",
"./asset/zeichnung1mask.png",
"3d render, 3d model, clean 3d style, space ship, isolated clean white background, cinematic lighting",
0.95,
0.5,
0.5,
],
[
"./asset/zeichnung2.jpg",
"./asset/zeichnung2mask.png",
"3d render, 3d model, clean 3d style, space station on mars, isolated clean white background, cinematic lighting",
1.0,
0.5,
0.3,
],
[
"./asset/zeichnung3.jpg",
"./asset/zeichnung3mask.png",
"3d render, 3d model, clean 3d style, cute space astronaut on mars, isolated clean white background, cinematic lighting",
1.0,
0.45,
1.5,
],
]
def run_for_examples(style_image, source_image, prompt, scale, control_scale, guidance_scale):
# added
# if source_image is not None:
# source_image = segment(source_image)
#/added
return create_image(
image_pil=style_image,
input_image=source_image,
prompt=prompt,
n_prompt="text, watermark, lowres, low quality, worst quality, deformed, glitch, low contrast, noisy, saturation, blurry",
scale=scale,
control_scale=control_scale,
guidance_scale=0.0,
num_inference_steps=2,
seed=42,
target="Load only style blocks",
neg_content_prompt="",
neg_content_scale=0,
)
@spaces.GPU
def create_image(
image_pil,
input_image,
# added
# src_image_pil,
#/added
prompt,
n_prompt,
scale,
control_scale,
guidance_scale,
num_inference_steps,
seed,
target="Load only style blocks",
neg_content_prompt=None,
neg_content_scale=0,
):
seed = random.randint(0, MAX_SEED) if seed == -1 else seed
if target == "Load original IP-Adapter":
# target_blocks=["blocks"] for original IP-Adapter
ip_model = IPAdapterXL(
pipe, image_encoder_path, ip_ckpt, device, target_blocks=["blocks"]
)
elif target == "Load only style blocks":
# target_blocks=["up_blocks.0.attentions.1"] for style blocks only
ip_model = IPAdapterXL(
pipe,
image_encoder_path,
ip_ckpt,
device,
target_blocks=["up_blocks.0.attentions.1"],
)
elif target == "Load style+layout block":
# target_blocks = ["up_blocks.0.attentions.1", "down_blocks.2.attentions.1"] # for style+layout blocks
ip_model = IPAdapterXL(
pipe,
image_encoder_path,
ip_ckpt,
device,
target_blocks=["up_blocks.0.attentions.1", "down_blocks.2.attentions.1"],
)
if input_image is not None:
input_image = resize_img(input_image, max_side=1024)
cv_input_image = pil_to_cv2(input_image)
detected_map = cv2.Canny(cv_input_image, 50, 200)
canny_map = Image.fromarray(cv2.cvtColor(detected_map, cv2.COLOR_BGR2RGB))
else:
canny_map = Image.new("RGB", (1024, 1024), color=(255, 255, 255))
control_scale = 0
if float(control_scale) == 0:
canny_map = canny_map.resize((1024, 1024))
if len(neg_content_prompt) > 0 and neg_content_scale != 0:
images = ip_model.generate(
pil_image=image_pil,
prompt=prompt,
negative_prompt=n_prompt,
scale=scale,
guidance_scale=guidance_scale,
num_samples=1,
num_inference_steps=num_inference_steps,
seed=seed,
image=canny_map,
controlnet_conditioning_scale=float(control_scale),
neg_content_prompt=neg_content_prompt,
neg_content_scale=neg_content_scale,
)
else:
images = ip_model.generate(
pil_image=image_pil,
prompt=prompt,
negative_prompt=n_prompt,
scale=scale,
guidance_scale=guidance_scale,
num_samples=1,
num_inference_steps=num_inference_steps,
seed=seed,
image=canny_map,
controlnet_conditioning_scale=float(control_scale),
)
image = images[0]
with tempfile.NamedTemporaryFile(suffix=".jpg", delete=False) as tmpfile:
image.save(tmpfile, "JPEG", quality=80, optimize=True, progressive=True)
return Path(tmpfile.name)
def pil_to_cv2(image_pil):
image_np = np.array(image_pil)
image_cv2 = cv2.cvtColor(image_np, cv2.COLOR_RGB2BGR)
return image_cv2
def segment(image_pil):
return remove(image_pil)
# Description
title = r"""
<h1 align="center">Pipeline 1: 2.5D( image to image )</h1>
"""
description = r"""
<b>ARM <3 GoldExtra KI-Demo #1<b/>
<p>Bei der finalen Version läuft dieser Teil auf einer dedicated GPU! Bitte beachten: Bei der Demo mit einer "Zero" GPU kann es zu kurzen Wartezeiten
und Leistungsbeschränkungen kommen, da Zero's günstig zum Testen sind, jedoch von vielen Menschen gleichzeitig verwendet werden. Im Fall der Fälle bitte
kurz warten, dann geht sie wieder.</p><br>
<p>Normalerweise sollte ein <b>Scale<b/> von '1' die besten Ergebnisse liefern. Das ist ein normierter Wert, den wir erreichen wollen. Bei '1.x' bleibt
die KI näher beim Bild und bei '0.x' fängt die KI an Bildinhalte dazu zu erfinden.<br>
Man kann auch die Details öffnen und an den feineren Rädchend drehen. Die fürs Projekt spannenden Einstellungen sind der <b>ControlNet Scale</b>, der verändert,
wie wichtig der KI das Input Bild ist und der <b>Guidance Scale</b>, bei dem es um die Wichtigkeit des Text-Prompts geht. Die restlichen Einstellungen könnt ihr ignorieren.
Das Source-Image ist sowas wie eine Malvorlage für die KI. D.h. sie wird versuchen die Inhalte der Vorlage so genau wie möglich bei der Bild-Synthese zu verwenden.
Bei der finalen Version, wird hier automatisch eine Vorlage der Zeichnung erstellt, damit die Ergebnisse der 2.5D-Synthese möglichst nah (Farbe, Form, Komposition)
der Kidnerzeichnung ist, und gleichzeitig ein Bild generiert, das vergleichsweise gute Ergebnisse bei der 3D Synthese erziehlt. Der zeichnerische, leicht verwaschene Stil
der 2.5D Synthese ist erwünscht und wird für die 3D Synthese gebraucht.</p>
"""
article = r"""
<br>
Bei technischen Fragen schickt bitte ein <a href="mailto:hideo@artificialmuseum.com">Mail an Hidéo</a> oder bei allgemeinen Fragen schickt
<a href="mailto:team@artificialmuseum.com">Mail an das ARM-Team</a>.
"""
block = gr.Blocks()
with block:
# description
gr.Markdown(title)
gr.Markdown(description)
with gr.Tabs():
with gr.Row():
with gr.Column():
with gr.Row():
with gr.Column():
with gr.Row():
# with gr.Column():
image_pil = gr.Image(label="Style Image", type="pil")
with gr.Column():
prompt = gr.Textbox(
label="Text-Prompts",
value="<How (Guidance)>, <What (Objekt)>, <Where (Location)>, <With (Qualität)>",
)
scale = gr.Slider(
minimum=0, maximum=2.0, step=0.01, value=1.0, label="Scale"
)
with gr.Accordion(open=False, label="Motorhaube (optional)"):
target = gr.Radio(
[
"Load only style blocks",
"Load style+layout block",
"Load original IP-Adapter",
],
value="Load only style blocks",
label="Adapter Modus",
)
with gr.Column():
src_image_pil = gr.Image(
label="Source Image (optional/wird generiert)", type="pil"
)
control_scale = gr.Slider(
minimum=0,
maximum=1.0,
step=0.01,
value=0.5,
label="ControlNet Scale (Relevanz: Input-Bild)",
)
n_prompt = gr.Textbox(
label="Negative Prompt (Ignore this!)",
value="text, watermark, lowres, low quality, worst quality, deformed, detached, broken, glitch, low contrast, noisy, saturation, blurry, blur",
)
neg_content_prompt = gr.Textbox(
label="Negative Content Prompt (Ignore this!)", value=""
)
neg_content_scale = gr.Slider(
minimum=0,
maximum=1.0,
step=0.01,
value=0.5,
label="NCS (Ignore this!) // neg_content_scale",
)
guidance_scale = gr.Slider(
minimum=0,
maximum=10.0,
step=0.01,
value=0.0,
label="Guidance Scale (Relevanz: Text-Prompt)",
)
num_inference_steps = gr.Slider(
minimum=2,
maximum=50.0,
step=1.0,
value=2,
label="Inference Steps (Stärke der Bildsynthese)",
)
seed = gr.Slider(
minimum=-1,
maximum=MAX_SEED,
value=-1,
step=1,
label="Seed Value (Seed-Proof) // -1 == random",
)
generate_button = gr.Button("Simsalabim")
with gr.Column():
generated_image = gr.Image(label="Magix uWu")
inputs = [
image_pil,
src_image_pil,
prompt,
n_prompt,
scale,
control_scale,
guidance_scale,
num_inference_steps,
seed,
target,
neg_content_prompt,
neg_content_scale,
]
outputs = [generated_image]
gr.on(
triggers=[
# prompt.input,
generate_button.click,
# guidance_scale.input,
# scale.input,
# control_scale.input,
# seed.input,
],
fn=create_image,
inputs=inputs,
outputs=outputs,
show_progress="minimal",
show_api=False,
trigger_mode="always_last",
)
gr.Examples(
examples=examples,
inputs=[image_pil, src_image_pil, prompt, scale, control_scale, guidance_scale],
fn=run_for_examples,
outputs=[generated_image],
cache_examples=True,
)
gr.Markdown(article)
block.queue(api_open=False)
block.launch(show_api=False) |