Spaces:
Runtime error
Runtime error
import torch | |
from transformers import AutoModel, AutoTokenizer, AutoProcessor, LlavaForConditionalGeneration | |
import gradio as gr | |
# Specify CPU usage | |
device = torch.device("cpu") | |
model_id = "hitmanonholiday/llava-1.5-7b-4bit-finetuned3" | |
# Load the tokenizer | |
tokenizer = AutoTokenizer.from_pretrained(model_id) | |
# Load the model without quantization | |
model = LlavaForConditionalGeneration.from_pretrained( | |
model_id, | |
torch_dtype=torch.float32 # Use float32 for CPU compatibility | |
).to(device) | |
# Load the processor (if needed) | |
processor = AutoProcessor.from_pretrained(model_id) | |
processor.tokenizer = tokenizer | |
# Define the chat template (if using Gradio) | |
LLAVA_CHAT_TEMPLATE = """A chat between a curious user and an artificial intelligence assistant. | |
The assistant gives helpful, detailed, and polite answers to the user's questions. | |
{% for message in messages %}{% if message['role'] == 'user' %} | |
USER: {% else %}ASSISTANT: {% endif %}{% for item in message['content'] %}{% if item['type'] == 'text' %}{{ item['text'] }}{% elif item['type'] == 'image' %}<image>{% endif %}{% endfor %} | |
{% if message['role'] == 'user' %} {% else %}{{eos_token}}{% endif %}{% endfor %}""" | |
tokenizer.chat_template = LLAVA_CHAT_TEMPLATE | |
# Define the prediction function (if using Gradio) | |
def predict(image, text): | |
# Process the image (if needed) | |
inputs = processor(images=image, text=text, return_tensors="pt").to(device) | |
# Generate response | |
with torch.no_grad(): | |
outputs = model.generate(input_ids=inputs['input_ids'], attention_mask=inputs['attention_mask']) | |
response = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
return response | |
# Define Gradio interface (if using Gradio) | |
inputs = [ | |
gr.inputs.Image(type="pil", label="Upload an image"), | |
gr.inputs.Textbox(lines=2, placeholder="Type your text here...", label="Input Text") | |
] | |
outputs = gr.outputs.Textbox(label="Output") | |
gr.Interface(fn=predict, inputs=inputs, outputs=outputs, title="LLAVA Multimodal Chatbot").launch(share=True) | |