File size: 3,204 Bytes
5263bd3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a61f4be
870813f
 
 
 
 
 
 
 
 
5263bd3
870813f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2243c0c
870813f
 
a61f4be
870813f
 
63d967d
 
870813f
 
63d967d
 
870813f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5263bd3
870813f
 
 
 
2243c0c
870813f
 
 
5263bd3
870813f
5263bd3
 
 
 
 
 
870813f
 
 
5263bd3
870813f
5263bd3
870813f
 
 
 
5263bd3
 
63d967d
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
import gradio as gr
import torch
import joblib
import numpy as np
from itertools import product
import torch.nn as nn

class VirusClassifier(nn.Module):
    def __init__(self, input_shape: int):
        super(VirusClassifier, self).__init__()
        self.network = nn.Sequential(
            nn.Linear(input_shape, 64),
            nn.GELU(),
            nn.BatchNorm1d(64),
            nn.Dropout(0.3),
            nn.Linear(64, 32),
            nn.GELU(),
            nn.BatchNorm1d(32),
            nn.Dropout(0.3),
            nn.Linear(32, 32),
            nn.GELU(),
            nn.Linear(32, 2)
        )

    def forward(self, x):
        return self.network(x)

def sequence_to_kmer_vector(sequence: str, k: int = 6) -> np.ndarray:
    kmers = [''.join(p) for p in product("ACGT", repeat=k)]
    kmer_dict = {kmer: 0 for kmer in kmers}
    
    for i in range(len(sequence) - k + 1):
        kmer = sequence[i:i+k]
        if kmer in kmer_dict:
            kmer_dict[kmer] += 1
            
    return np.array(list(kmer_dict.values()))

def parse_fasta(text):
    sequences = []
    current_header = None
    current_sequence = []
    
    for line in text.split('\n'):
        line = line.strip()
        if not line:
            continue
        if line.startswith('>'):
            if current_header:
                sequences.append((current_header, ''.join(current_sequence)))
            current_header = line[1:]
            current_sequence = []
        else:
            current_sequence.append(line.upper())
            
    if current_header:
        sequences.append((current_header, ''.join(current_sequence)))
        
    return sequences

def predict(file_obj):
    if file_obj is None:
        return "Please upload a FASTA file"
    
    # Read the file content
    text = file_obj.read().decode()
    
    # Load model and scaler
    device = 'cuda' if torch.cuda.is_available() else 'cpu'
    model = VirusClassifier(4096).to(device)
    model.load_state_dict(torch.load('model.pt', map_location=device))
    scaler = joblib.load('scaler.pkl')
    model.eval()
    
    # Get predictions
    results = []
    sequences = parse_fasta(text)
    
    for header, seq in sequences:
        # Get k-mer vector
        kmer_vector = sequence_to_kmer_vector(seq)
        kmer_vector = scaler.transform(kmer_vector.reshape(1, -1))
        
        # Predict
        with torch.no_grad():
            output = model(torch.FloatTensor(kmer_vector).to(device))
            probs = torch.softmax(output, dim=1)
        
        # Format results
        pred_class = 1 if probs[0][1] > probs[0][0] else 0
        pred_label = 'human' if pred_class == 1 else 'non-human'
        
        result = f"""
Sequence: {header}
Prediction: {pred_label}
Confidence: {float(max(probs[0])):0.4f}
Human probability: {float(probs[0][1]):0.4f}
Non-human probability: {float(probs[0][0]):0.4f}
"""
        results.append(result)
    
    return "\n".join(results)

# Create the interface
iface = gr.Interface(
    fn=predict,
    inputs=gr.File(label="Upload FASTA file"),
    outputs=gr.Textbox(label="Results"),
    title="Virus Host Classifier"
)

# Launch with public link
iface.launch(share=True)