HostClassifier / app.py
hiyata's picture
Update app.py
723da6d verified
raw
history blame
3.7 kB
import gradio as gr
import torch
import joblib
import numpy as np
from itertools import product
import torch.nn as nn
class VirusClassifier(nn.Module):
def __init__(self, input_shape: int):
super(VirusClassifier, self).__init__()
self.network = nn.Sequential(
nn.Linear(input_shape, 64),
nn.GELU(),
nn.BatchNorm1d(64),
nn.Dropout(0.3),
nn.Linear(64, 32),
nn.GELU(),
nn.BatchNorm1d(32),
nn.Dropout(0.3),
nn.Linear(32, 32),
nn.GELU(),
nn.Linear(32, 2)
)
def forward(self, x):
return self.network(x)
def sequence_to_kmer_vector(sequence: str, k: int = 4) -> np.ndarray:
kmers = [''.join(p) for p in product("ACGT", repeat=k)]
kmer_dict = {kmer: 0 for kmer in kmers}
for i in range(len(sequence) - k + 1):
kmer = sequence[i:i+k]
if kmer in kmer_dict:
kmer_dict[kmer] += 1
return np.array(list(kmer_dict.values()))
def parse_fasta(text):
sequences = []
current_header = None
current_sequence = []
for line in text.split('\n'):
line = line.strip()
if not line:
continue
if line.startswith('>'):
if current_header:
sequences.append((current_header, ''.join(current_sequence)))
current_header = line[1:]
current_sequence = []
else:
current_sequence.append(line.upper())
if current_header:
sequences.append((current_header, ''.join(current_sequence)))
return sequences
def predict(file_obj):
if file_obj is None:
return "Please upload a FASTA file"
# Read the file content
try:
# Handle both string and file object cases
if isinstance(file_obj, str):
text = file_obj
else:
text = file_obj.decode('utf-8')
except Exception as e:
return f"Error reading file: {str(e)}"
# Load model and scaler
try:
device = 'cuda' if torch.cuda.is_available() else 'cpu'
model = VirusClassifier(4096).to(device)
model.load_state_dict(torch.load('model.pt', map_location=device))
scaler = joblib.load('scaler.pkl')
model.eval()
except Exception as e:
return f"Error loading model: {str(e)}"
# Get predictions
results = []
try:
sequences = parse_fasta(text)
for header, seq in sequences:
# Get k-mer vector
kmer_vector = sequence_to_kmer_vector(seq)
kmer_vector = scaler.transform(kmer_vector.reshape(1, -1))
# Predict
with torch.no_grad():
output = model(torch.FloatTensor(kmer_vector).to(device))
probs = torch.softmax(output, dim=1)
# Format results
pred_class = 1 if probs[0][1] > probs[0][0] else 0
pred_label = 'human' if pred_class == 1 else 'non-human'
result = f"""Sequence: {header}
Prediction: {pred_label}
Confidence: {float(max(probs[0])):0.4f}
Human probability: {float(probs[0][1]):0.4f}
Non-human probability: {float(probs[0][0]):0.4f}"""
results.append(result)
except Exception as e:
return f"Error processing sequences: {str(e)}"
return "\n\n".join(results)
# Create the interface
iface = gr.Interface(
fn=predict,
inputs=gr.File(label="Upload FASTA file", type="binary"),
outputs=gr.Textbox(label="Results"),
title="Virus Host Classifier"
)
# Launch the interface
if __name__ == "__main__":
iface.launch() # Remove share=True for Hugging Face Spaces