File size: 42,418 Bytes
0add2d4 fc95975 0add2d4 6303415 5d56c36 6303415 4bbaeac f217a73 693f997 0add2d4 4bbaeac 0add2d4 ffdfff7 fc95975 6f25c5c 0610f9d d1e3e7b f622ed0 0610f9d 0add2d4 611e98e 6f25c5c 0add2d4 6f25c5c f217a73 6f25c5c 0610f9d 611e98e 0add2d4 611e98e 0add2d4 611e98e 0add2d4 693f997 0add2d4 da13b29 5d485e5 2c2527f 5d485e5 2c2527f 5d485e5 2c2527f 5d485e5 da13b29 0add2d4 693f997 0add2d4 14574d7 ffdfff7 0add2d4 ffdfff7 0add2d4 5d485e5 0610f9d 5d485e5 0610f9d 5d485e5 0610f9d 14574d7 5d485e5 ffdfff7 4809033 5d485e5 4809033 5d485e5 4809033 5d485e5 4809033 5d485e5 4809033 5d485e5 4809033 5d56c36 4809033 5d485e5 4809033 5d485e5 4809033 5d485e5 0610f9d 5d485e5 0610f9d 4809033 693f997 0add2d4 5d485e5 0610f9d 5d485e5 0610f9d 5d485e5 ffdfff7 0add2d4 5d485e5 5d56c36 5d485e5 0610f9d 5d485e5 0610f9d 5d485e5 ffdfff7 f217a73 5d485e5 5d56c36 5d485e5 fa81556 5d485e5 fa81556 5d485e5 0610f9d 5d485e5 0610f9d 5d485e5 0add2d4 5d485e5 0610f9d 5d485e5 0610f9d 5d485e5 0add2d4 5d485e5 2c2527f 5d485e5 0610f9d 5d485e5 0610f9d 5d485e5 0add2d4 2c2527f 14574d7 2c2527f 061d2e4 14574d7 061d2e4 693f997 061d2e4 14574d7 061d2e4 14574d7 061d2e4 14574d7 061d2e4 14574d7 2c2527f 14574d7 2c2527f a446a8b 0add2d4 611e98e da13b29 611e98e a446a8b da13b29 0610f9d da13b29 0610f9d da13b29 0add2d4 da13b29 2c2527f da13b29 fa81556 da13b29 a446a8b 2c2527f da13b29 2c2527f da13b29 2c2527f a446a8b 2c2527f da13b29 2c2527f 0add2d4 0610f9d da13b29 2c2527f 0add2d4 da13b29 2c2527f da13b29 0610f9d da13b29 0610f9d da13b29 0610f9d da13b29 2c2527f 0add2d4 bfbcd60 5d485e5 bfbcd60 2c2527f 0add2d4 611e98e 0add2d4 611e98e 0add2d4 611e98e 0add2d4 611e98e 0add2d4 611e98e 2c2527f 0add2d4 6f25c5c 2c2527f 6f25c5c 2c2527f 6f25c5c 2c2527f 6f25c5c 2c2527f 6f25c5c 2c2527f bfbcd60 2c2527f bfbcd60 2c2527f bfbcd60 2c2527f 4809033 2c2527f 4809033 2c2527f 0add2d4 0610f9d 0add2d4 0610f9d 0add2d4 bfbcd60 6f25c5c ffdfff7 0610f9d fa81556 0610f9d fa81556 0610f9d fa81556 0610f9d 4809033 0610f9d 693f997 0610f9d ea01f38 0610f9d 0add2d4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 |
# Run with: streamlit run visualization.py
import streamlit as st
import os
from io import StringIO
import base64
import json
import pandas as pd
pd.options.mode.chained_assignment = None
import numpy as np
import matplotlib.pyplot as plt
from filtering import LoadParameters, ModifyingDocuments, Filtering
from languages_id import langs_id
class Visualization_for_lang:
def __init__(
self,
path_data,
lang,
num_docs,
num_docs_for_words,
max_len_text_display,
lang_dataset_id,
path_fasttext_model,
path_sentencepiece_model,
path_kenlm_model,
):
self.path_data = path_data
self.lang = lang
self.num_docs = num_docs
self.num_docs_for_words = num_docs_for_words
self.max_len_text_display = max_len_text_display
self.lang_dataset_id = lang_dataset_id
self.param = LoadParameters.load_parameters(lang_dataset_id)
self.stopwords = LoadParameters.load_stopwords(lang_dataset_id)
self.flagged_words = LoadParameters.load_flagged_words(lang_dataset_id)
self.model_lang_id = LoadParameters.load_model_lang_id(
lang_dataset_id, path_fasttext_model
)
self.sentencepiece_model = LoadParameters.load_sentencepiece_model(
lang_dataset_id, path_sentencepiece_model
)
self.sentencepiece_model_tok = (
self.sentencepiece_model if self.param["tokenization"] else None
)
self.kenlm_model = LoadParameters.load_kenlm_model(
lang_dataset_id, path_kenlm_model
)
def set_title(self):
st.title(f"Filtering visualization for {self.lang}")
def open_data(self):
with open(self.path_data) as json_file:
data = json.load(json_file)
self.num_docs = min(self.num_docs, len(data))
self.num_docs_for_words = min(self.num_docs_for_words, len(data))
if "words" in data[0]:
words = [doc["words"] for doc in data[: self.num_docs_for_words]]
words = [word for doc in words for word in doc]
self.words = pd.DataFrame(words)
else:
self.words = None
docs = data[: self.num_docs]
for doc in docs:
if not (self.words is None):
del doc["words"]
if len(doc["text"]) > self.max_len_text_display:
doc["text"] = (
doc["text"][: self.max_len_text_display]
+ " [...] [THIS LONG TEXT HAS BEEN TRUNCATED FOR DISPLAY REASONS]"
)
self.docs_checkpoint = pd.DataFrame(docs)
self.docs = self.docs_checkpoint
@staticmethod
def print_discarded_by_cond(cond):
st.caption(
f"{(len(cond) - np.sum(1*cond)) / len(cond) * 100:.2f}% of the total is discarded with this filter."
)
@staticmethod
def plot_hist(dataframe, key, num_bins=50):
checkbox = st.checkbox(
"Diplay distribution", value=True, key=f"display_distribution_{key[0]}"
)
if checkbox:
fig, ax = plt.subplots()
val = dataframe[key[0]].values
if np.median(val) != 0:
val = val[
abs(val - np.median(val))
< 9 * np.median(np.absolute(val - np.median(val)))
]
ax.hist(val, bins=num_bins, density=True)
ax.set_title(" ".join(key[0].split("_")))
ax.axvline(x=key[1], color="r", linestyle="dashed")
st.pyplot(fig)
@staticmethod
def display_dataset(dataframe, cond, description, type_of_examples):
displayed_examples = dataframe.loc[cond]
st.subheader(
f"{description}: {len(displayed_examples)} {type_of_examples} ({len(displayed_examples) / len(dataframe.index) * 100:.2f}%)"
)
st.markdown(
"Click on a column to sort by it, place the cursor on the text to display it."
)
st.dataframe(displayed_examples)
def filtering_of_docs(self):
def set_sliders():
columns = list(self.docs)
keys = []
conds = {}
def get_cond(key, cutoff, max_cutoff):
if max_cutoff:
return self.docs[key] <= cutoff
return self.docs[key] >= cutoff
if "number_words" in columns:
with st.sidebar.expander("Number of words"):
cutoff_def = "If the number of words of a document is lower than this number, the document is removed."
max_nb_words = int(np.max(self.docs["number_words"])) + 1
cutoff_min_number_words = st.slider(
cutoff_def, 0, min(max_nb_words, 500), 0
)
new_key = ("number_words", cutoff_min_number_words, False)
keys.append(new_key)
Visualization_for_lang.plot_hist(self.docs, new_key)
cond_1 = get_cond(new_key[0], new_key[1], new_key[2])
Visualization_for_lang.print_discarded_by_cond(cond_1)
cutoff_def = "If the number of words of a document is higher than this number, the document is removed."
cutoff_max_number_words = st.slider(
cutoff_def, 0, max_nb_words, max_nb_words
)
new_key = ("number_words", cutoff_max_number_words, True)
keys.append(new_key)
cond_2 = get_cond(new_key[0], new_key[1], new_key[2])
Visualization_for_lang.print_discarded_by_cond(cond_2)
conds["number_words"] = [cond_1, cond_2]
if "character_repetition_ratio" in columns:
with st.sidebar.expander("Character repetition ratio"):
val_repetitions_lengths = list(
self.docs["character_repetition_ratio"].iloc[0].keys()
)
default_index = (
val_repetitions_lengths.index("10")
if "10" in val_repetitions_lengths
else 0
)
label_selectbox = "Length of repetitions in characters (that will influence the character repetition ratio)."
repetitions_length = st.selectbox(
label=label_selectbox,
options=val_repetitions_lengths,
index=default_index,
)
st.caption(
"Choosing a higher or lower number does not mean that the filtering "
"is stronger or weaker. Be careful, choosing a low number (below 5 for languages like English) "
"tends to associate a high character repetition ratio to very long documents (like book chapters), but with "
"few or no repetitions, simply because their length gives them more diversity, and we do "
"not want to discard such documents. It is generally better to increase this number, so that false "
"positives are very short documents (which we want to delete anyway) rather than long ones. However, "
"a low number can be useful for Chinese, where a character can designate a whole word."
)
self.docs["character_repetition_ratio"] = self.docs_checkpoint[
"character_repetition_ratio"
]
for i in range(len(self.docs["character_repetition_ratio"])):
self.docs["character_repetition_ratio"].iloc[i] = self.docs[
"character_repetition_ratio"
].iloc[i][repetitions_length]
cutoff_def = "If the character repetition ratio of a document is higher than this number, the document is removed."
cutoff_character_repetition_ratio = st.slider(
cutoff_def, 0.0, 1.0, 1.0, step=0.01
)
new_key = (
"character_repetition_ratio",
cutoff_character_repetition_ratio,
True,
repetitions_length,
)
keys.append(new_key)
Visualization_for_lang.plot_hist(self.docs, new_key)
cond = get_cond(new_key[0], new_key[1], new_key[2])
Visualization_for_lang.print_discarded_by_cond(cond)
conds["character_repetition_ratio"] = [cond]
if "word_repetition_ratio" in columns:
with st.sidebar.expander("Word repetition ratio"):
val_repetitions_lengths = list(
self.docs["word_repetition_ratio"].iloc[0].keys()
)
default_index = (
val_repetitions_lengths.index("5")
if "5" in val_repetitions_lengths
else 0
)
label_selectbox = "Length of repetitions in words (that will influence the word repetition ratio)."
repetitions_length = st.selectbox(
label=label_selectbox,
options=val_repetitions_lengths,
index=default_index,
)
st.caption(
"Choosing a higher or lower number does not mean that the filtering "
"is stronger or weaker. Be careful, choosing a low number (like 3) could "
"tend to associate a high word repetition ratio to very long documents (like book chapters), but with "
"few or no repetitions, simply because their length gives them more diversity, and we do "
"not want to discard such documents. It is generally better to increase a bit this number, so that false "
"positives are very short documents (which we want to delete anyway) rather than long ones."
)
self.docs["word_repetition_ratio"] = self.docs_checkpoint[
"word_repetition_ratio"
]
for i in range(len(self.docs["word_repetition_ratio"])):
self.docs["word_repetition_ratio"].iloc[i] = self.docs[
"word_repetition_ratio"
].iloc[i][repetitions_length]
cutoff_def = "If the word repetition ratio of a document is higher than this number, the document is removed."
cutoff_word_repetition_ratio = st.slider(
cutoff_def, 0.0, 1.0, 1.0, step=0.01
)
new_key = (
"word_repetition_ratio",
cutoff_word_repetition_ratio,
True,
repetitions_length,
)
keys.append(new_key)
Visualization_for_lang.plot_hist(self.docs, new_key)
cond = get_cond(new_key[0], new_key[1], new_key[2])
Visualization_for_lang.print_discarded_by_cond(cond)
conds["word_repetition_ratio"] = [cond]
if "special_characters_ratio" in columns:
with st.sidebar.expander("Special characters ratio"):
cutoff_def = "If the special characters ratio of a document is higher than this number, the document is removed."
cutoff_special_characters_ratio = st.slider(
cutoff_def, 0.0, 1.0, 1.0, step=0.01
)
new_key = (
"special_characters_ratio",
cutoff_special_characters_ratio,
True,
)
keys.append(new_key)
Visualization_for_lang.plot_hist(self.docs, new_key)
cond = get_cond(new_key[0], new_key[1], new_key[2])
Visualization_for_lang.print_discarded_by_cond(cond)
conds["special_characters_ratio"] = [cond]
if "stopwords_ratio" in columns:
with st.sidebar.expander("Stop words ratio"):
stopwords_file = st.file_uploader(
"Upload your own list of stop words (one per line). If there is none, the default one is used."
)
if stopwords_file:
new_stopwords = StringIO(
stopwords_file.getvalue().decode("utf-8")
).read()
new_stopwords = set(new_stopwords.split("\n"))
self.docs["stopwords_ratio"] = self.docs_checkpoint[
"stopwords_ratio"
]
for i in range(len(self.docs["stopwords_ratio"])):
self.docs["stopwords_ratio"].iloc[
i
] = Filtering.compute_stopwords_ratio(
self.docs["text"].iloc[i],
self.sentencepiece_model_tok,
self.param["strip_characters"],
self.param["cond_words_augmentation"],
self.param["words_augmentation_group_sizes"],
self.param["words_augmentation_join_char"],
new_stopwords,
)
cutoff_def = "If the stop words ratio of a document is lower than this number, the document is removed."
cutoff_stopwords_ratio = st.slider(
cutoff_def, 0.0, 1.0, 0.0, step=0.01
)
new_key = ("stopwords_ratio", cutoff_stopwords_ratio, False)
keys.append(new_key)
Visualization_for_lang.plot_hist(self.docs, new_key)
cond = get_cond(new_key[0], new_key[1], new_key[2])
Visualization_for_lang.print_discarded_by_cond(cond)
conds["stopwords_ratio"] = [cond]
if "flagged_words_ratio" in columns:
with st.sidebar.expander("Flagged words ratio"):
flagged_words_file = st.file_uploader(
"Upload your own list of flagged words (one per line). If there is none, the default one is used."
)
if flagged_words_file:
new_flagged_words = StringIO(
flagged_words_file.getvalue().decode("utf-8")
).read()
new_flagged_words = set(new_flagged_words.split("\n"))
self.docs["flagged_words_ratio"] = self.docs_checkpoint[
"flagged_words_ratio"
]
for i in range(len(self.docs["flagged_words_ratio"])):
self.docs["flagged_words_ratio"].iloc[
i
] = Filtering.compute_flagged_words_ratio(
self.docs["text"].iloc[i],
self.sentencepiece_model_tok,
self.param["strip_characters"],
self.param["cond_words_augmentation"],
self.param["words_augmentation_group_sizes"],
self.param["words_augmentation_join_char"],
new_flagged_words,
)
cutoff_def = "If the flagged words ratio of a document is higher than this number, the document is removed."
max_fwr = np.max(self.docs["flagged_words_ratio"])
max_fwr = np.ceil(max_fwr * 1000) / 1000
max_fwr = float(max_fwr)
cutoff_flagged_words_ratio = st.slider(
cutoff_def,
0.000,
max_fwr,
max_fwr,
step=0.001,
format="%f",
)
new_key = ("flagged_words_ratio", cutoff_flagged_words_ratio, True)
keys.append(new_key)
Visualization_for_lang.plot_hist(self.docs, new_key)
cond = get_cond(new_key[0], new_key[1], new_key[2])
Visualization_for_lang.print_discarded_by_cond(cond)
conds["flagged_words_ratio"] = [cond]
if "lang_id_score" in columns:
with st.sidebar.expander("Language ID confidence score"):
cutoff_def = "If the confidence score for the language identification prediction of a document is lower than this number, the document is removed."
cutoff_lang_id_score = st.slider(
cutoff_def, 0.0, 1.0, 0.0, step=0.01
)
new_key = ("lang_id_score", cutoff_lang_id_score, False)
keys.append(new_key)
Visualization_for_lang.plot_hist(self.docs, new_key)
cond = get_cond(new_key[0], new_key[1], new_key[2])
Visualization_for_lang.print_discarded_by_cond(cond)
conds["lang_id_score"] = [cond]
if "perplexity_score" in columns:
with st.sidebar.expander("Perplexity score"):
cutoff_def = "If the perplexity score of a document is higher than this number, the document is removed."
max_pp = int(np.max(self.docs["perplexity_score"])) + 1
cutoff_perplexity_score = st.slider(cutoff_def, 0, max_pp, max_pp)
new_key = ("perplexity_score", cutoff_perplexity_score, True)
keys.append(new_key)
Visualization_for_lang.plot_hist(self.docs, new_key)
cond = get_cond(new_key[0], new_key[1], new_key[2])
Visualization_for_lang.print_discarded_by_cond(cond)
conds["perplexity_score"] = [cond]
return keys, conds
with st.expander(
f"Filtering on documents, for {self.num_docs} {self.lang} documents"
):
st.header(
f"Filtering on documents, for {self.num_docs} {self.lang} documents"
)
if "labels" in list(self.docs):
chosen_label = st.selectbox(
label="Consider only documents that include the following label",
options=[
"All",
"NA: Narrative",
"IN: Informational Description",
"OP: Opinion",
"ID: Interactive Discussion",
"HI: How-to/Instruction",
"IP: Informational Persuasion",
"LY: Lyrical",
"SP: Spoken",
],
)
chosen_label = chosen_label.split(":")[0]
if chosen_label != "All":
cond_label = list(
self.docs["labels"].apply(
lambda x: True if chosen_label in x else False
)
)
self.docs = self.docs[cond_label]
if self.docs.empty:
st.markdown(
"No document to display, please try to select a different label."
)
self.keys = []
self.parameters = []
else:
st.sidebar.subheader("Parameters of the filtering on documents")
self.keys, conds = set_sliders()
self.parameters = self.keys * 1
all_conds = [
subcond for cond in list(conds.values()) for subcond in cond
]
all_conds = np.all(all_conds, axis=0)
Visualization_for_lang.display_dataset(
self.docs, np.invert(all_conds), "Discarded documents", "docs"
)
# st.subheader("Display discarded documents by filter")
display_discarded_documents_by_filter = st.checkbox(
"Display discarded documents by filter"
)
if display_discarded_documents_by_filter:
columns = list(self.docs)
if "number_words" in columns:
cond_filter = np.invert(np.all(conds["number_words"], axis=0))
Visualization_for_lang.display_dataset(
self.docs,
cond_filter,
"Discarded documents for the filter on the number of words",
"docs",
)
if "character_repetition_ratio" in columns:
cond_filter = np.invert(
np.all(conds["character_repetition_ratio"], axis=0)
)
Visualization_for_lang.display_dataset(
self.docs,
cond_filter,
"Discarded documents for the filter on the character repetition ratio",
"docs",
)
if "word_repetition_ratio" in columns:
cond_filter = np.invert(
np.all(conds["word_repetition_ratio"], axis=0)
)
Visualization_for_lang.display_dataset(
self.docs,
cond_filter,
"Discarded documents for the filter on the word repetition ratio",
"docs",
)
if "special_characters_ratio" in columns:
cond_filter = np.invert(
np.all(conds["special_characters_ratio"], axis=0)
)
Visualization_for_lang.display_dataset(
self.docs,
cond_filter,
"Discarded documents for the filter on the special characters ratio",
"docs",
)
if "stopwords_ratio" in columns:
cond_filter = np.invert(
np.all(conds["stopwords_ratio"], axis=0)
)
Visualization_for_lang.display_dataset(
self.docs,
cond_filter,
"Discarded documents for the filter on the stop words ratio",
"docs",
)
if "flagged_words_ratio" in columns:
cond_filter = np.invert(
np.all(conds["flagged_words_ratio"], axis=0)
)
Visualization_for_lang.display_dataset(
self.docs,
cond_filter,
"Discarded documents for the filter on the flagged words ratio",
"docs",
)
if "lang_id_score" in columns:
cond_filter = np.invert(np.all(conds["lang_id_score"], axis=0))
Visualization_for_lang.display_dataset(
self.docs,
cond_filter,
"Discarded documents for the filter on the language identification confidence score",
"docs",
)
if "perplexity_score" in columns:
cond_filter = np.invert(
np.all(conds["perplexity_score"], axis=0)
)
Visualization_for_lang.display_dataset(
self.docs,
cond_filter,
"Discarded documents for the filter on the perplexity score",
"docs",
)
Visualization_for_lang.display_dataset(
self.docs, all_conds, "Retained documents", "docs"
)
st.header("Download data")
with open(self.path_data) as json_file:
btn = st.download_button(
label="Download data as json",
data=json_file,
file_name="data.json",
)
def filtering_of_words(self):
if not (self.words is None):
columns = list(self.words)
st.sidebar.subheader("Parameter of the filtering on words")
conds_words = {}
if "len_word" in columns:
with st.sidebar.expander("Length of words"):
cutoff_def = "If the length of a word is higher than this number, the word is removed."
max_len_word = min(int(np.max(self.words["len_word"])) + 1, 200)
cutoff_word = st.slider(cutoff_def, 0, max_len_word, max_len_word)
new_key = ("len_word", cutoff_word, True)
self.parameters.append(new_key)
Visualization_for_lang.plot_hist(self.words, new_key)
cond_len_words = self.words["len_word"] <= cutoff_word
Visualization_for_lang.print_discarded_by_cond(cond_len_words)
conds_words["len_word"] = cond_len_words
if "incorrect_substrings" in columns:
with st.sidebar.expander("Words with incorrect substrings"):
incorrect_substrings = st.checkbox(
"Remove words with incorrect substrings."
)
self.parameters.append(
("incorrect_substrings", incorrect_substrings)
)
checkbox = st.checkbox(
"Diplay distribution",
value=True,
key="display_distribution_incorrect_substrings",
)
if checkbox:
incor_sub = np.array(self.words["incorrect_substrings"]) * 1
with_incor_sub = np.sum(incor_sub)
without_incor_sub = len(incor_sub) - with_incor_sub
st.markdown(
f"Number of words with incorrect substrings: {with_incor_sub}"
)
st.markdown(
f"Number of words without incorrect substrings: {without_incor_sub}"
)
if incorrect_substrings:
cond_incorrect_substrings = np.invert(
self.words["incorrect_substrings"]
)
else:
cond_incorrect_substrings = np.array(
[
True
for i in range(len(self.words["incorrect_substrings"]))
]
)
Visualization_for_lang.print_discarded_by_cond(
cond_incorrect_substrings
)
conds_words["incorrect_substrings"] = cond_incorrect_substrings
all_conds_words = np.all(list(conds_words.values()), axis=0)
with st.expander(
f"Filtering on words, for {self.num_docs_for_words} {self.lang} documents"
):
st.header(
f"Filtering on words, for {self.num_docs_for_words} {self.lang} documents"
)
st.markdown(
f"Since the number of words is way larger than the number of documents, "
f"we consider in this section words for only {self.num_docs_for_words} documents."
)
Visualization_for_lang.display_dataset(
self.words, np.invert(all_conds_words), "Discarded words", "words"
)
# st.subheader("Display discarded words by filter")
display_discarded_words_by_filter = st.checkbox(
"Display discarded words by filter"
)
if display_discarded_words_by_filter:
if "len_word" in columns:
cond_filter = np.invert(conds_words["len_word"])
Visualization_for_lang.display_dataset(
self.words,
cond_filter,
"Discarded words for the filter on length",
"words",
)
if "incorrect_substrings" in columns:
cond_filter = np.invert(conds_words["incorrect_substrings"])
Visualization_for_lang.display_dataset(
self.words,
cond_filter,
"Discarded words for the filter on incorrect substrings",
"words",
)
Visualization_for_lang.display_dataset(
self.words, all_conds_words, "Retained words", "words"
)
def download_parameters(self):
st.sidebar.subheader("Download parameters")
btn = st.sidebar.download_button(
label="Download current parameters as json",
data=json.dumps(self.parameters),
file_name=f"parameters_{self.lang_dataset_id}.json",
)
"""
def plot_zipf_law(self):
if not (self.words is None):
st.header("Zipf's Law")
display_zipf_law = st.checkbox("Display Zipf's Law")
if display_zipf_law:
freq_words = {}
for _, row in self.words.iterrows():
freq_words[row["word"]] = freq_words.get(row["word"], 0) + 1
freq_words = np.array(list(freq_words.values()))
freq_words = -np.sort(-freq_words)
fig, ax = plt.subplots()
ax.loglog(freq_words)
ax.set_title("Zipf's Law")
ax.set_xlabel("$i$-th most frequent word")
ax.set_ylabel("frequency in the documents")
st.pyplot(fig)
"""
def analyse_personal_doc(self):
with st.expander("Analyse your own document"):
st.header("Analyse your own document")
personal_doc = st.text_area(
label="Paste here the document you want to analyse",
value="",
max_chars=10000,
)
is_discarded = False
def is_doc_discarded(key, score):
if key[2]: # max cutoff
return score > key[1]
else:
return score < key[1]
if personal_doc:
st.markdown("Statistics of the document:")
for key in self.keys:
if key[0] == "number_words":
words = ModifyingDocuments.get_words_from_document(
personal_doc,
self.sentencepiece_model_tok,
lower_case=False,
strip_characters=self.param["strip_characters"],
)
if key[2]:
st.markdown(f"Number of words: {len(words)}")
if is_doc_discarded(key, len(words)):
is_discarded = True
elif key[0] == "character_repetition_ratio":
character_repetition_ratio = (
Filtering.compute_character_repetition_ratio(
personal_doc, int(key[3])
)
)
character_repetition_ratio = round(
character_repetition_ratio, 3
)
st.markdown(
f"Character repetition ratio: {character_repetition_ratio}"
)
if is_doc_discarded(key, character_repetition_ratio):
is_discarded = True
elif key[0] == "word_repetition_ratio":
word_repetition_ratio = Filtering.compute_word_repetition_ratio(
personal_doc,
self.sentencepiece_model_tok,
self.param["strip_characters"],
int(key[3]),
)
word_repetition_ratio = round(word_repetition_ratio, 3)
st.markdown(f"Word repetition ratio: {word_repetition_ratio}")
if is_doc_discarded(key, word_repetition_ratio):
is_discarded = True
elif key[0] == "special_characters_ratio":
special_characters_ratio = (
Filtering.compute_special_characters_ratio(
personal_doc, self.param["special_characters"]
)
)
special_characters_ratio = round(special_characters_ratio, 3)
st.markdown(
f"Special characters ratio: {special_characters_ratio}"
)
if is_doc_discarded(key, special_characters_ratio):
is_discarded = True
elif key[0] == "stopwords_ratio":
stopwords_ratio = Filtering.compute_stopwords_ratio(
personal_doc,
self.sentencepiece_model_tok,
self.param["strip_characters"],
self.param["cond_words_augmentation"],
self.param["words_augmentation_group_sizes"],
self.param["words_augmentation_join_char"],
self.stopwords,
)
stopwords_ratio = round(stopwords_ratio, 3)
st.markdown(f"Stop words ratio: {stopwords_ratio}")
if is_doc_discarded(key, stopwords_ratio):
is_discarded = True
elif key[0] == "flagged_words_ratio":
flagged_words_ratio = Filtering.compute_flagged_words_ratio(
personal_doc,
self.sentencepiece_model_tok,
self.param["strip_characters"],
self.param["cond_words_augmentation"],
self.param["words_augmentation_group_sizes"],
self.param["words_augmentation_join_char"],
self.flagged_words,
)
flagged_words_ratio = round(flagged_words_ratio, 3)
st.markdown(f"Flagged words ratio: {flagged_words_ratio}")
if is_doc_discarded(key, flagged_words_ratio):
is_discarded = True
elif key[0] == "lang_id_score":
(
lang_pred_dataset_id,
lang_id_score,
) = Filtering.compute_lang_id_pred_score(
personal_doc, self.model_lang_id
)
lang_id_score = round(lang_id_score, 3)
st.markdown(
f"Language identification confidence score: {lang_id_score}"
)
if is_doc_discarded(key, flagged_words_ratio) or (
self.lang_dataset_id != lang_pred_dataset_id
):
is_discarded = True
elif key[0] == "perplexity_score":
perplexity_score = Filtering.compute_perplexity_score(
personal_doc,
self.sentencepiece_model,
self.kenlm_model,
)
perplexity_score = round(perplexity_score, 3)
st.markdown(f"Perplexity score: {perplexity_score}")
if is_doc_discarded(key, perplexity_score):
is_discarded = True
is_discarded = "" if is_discarded else "not "
st.markdown(
f"With the current filtering parameters, this document **is {is_discarded}discarded**."
)
def visualization_for_lang(self):
self.set_title()
self.open_data()
self.filtering_of_docs()
self.filtering_of_words()
self.download_parameters()
self.analyse_personal_doc()
class Visualization:
def __init__(self, path_instructions, param_visu_langs):
self.path_instructions = path_instructions
self.param_visu_langs = param_visu_langs
def preamble(self):
def get_binary_file_downloader_html(bin_file, file_label="File"):
with open(bin_file, "rb") as f:
data = f.read()
bin_str = base64.b64encode(data).decode()
href = f'<a href="data:application/octet-stream;base64,{bin_str}" download="{os.path.basename(bin_file)}">{file_label}</a>'
return href
st.markdown(
"Before diving into this demo, you might want to take a look at how the filtering pipeline looks like in more detail in this "
+ get_binary_file_downloader_html(
self.path_instructions,
"pdf",
)
+ ".",
unsafe_allow_html=True,
)
def warning_preamble(self):
st.markdown(
"This demo can be a little slow, and only allows you to process up to 5000 documents "
"for a decent speed. If you want to display up to three times more documents and have "
"a faster visualization, we invite you to run this "
"[code](https://github.com/bigscience-workshop/data_tooling/tree/master/ac_dc/visualization) "
"on your computer."
)
def choose_lang(self):
options = [
self.param_visu_langs[lang_dataset_id]["lang"]
for lang_dataset_id in self.param_visu_langs
]
index = options.index("English") if ("English" in options) else 0
lang_chosen = st.selectbox(
label="Select the language for visualization",
options=options,
index=index,
)
if lang_chosen != "None":
lang_chosen_dataset_id = langs_id.loc[
langs_id["lang"] == lang_chosen, "dataset_id"
].iloc[0]
visualization_for_lang = Visualization_for_lang(
path_data=self.param_visu_langs[lang_chosen_dataset_id]["path_data"],
lang=self.param_visu_langs[lang_chosen_dataset_id]["lang"],
num_docs=self.param_visu_langs[lang_chosen_dataset_id]["num_docs"],
num_docs_for_words=self.param_visu_langs[lang_chosen_dataset_id][
"num_docs_for_words"
],
max_len_text_display=self.param_visu_langs[lang_chosen_dataset_id][
"max_len_text_display"
],
lang_dataset_id=self.param_visu_langs[lang_chosen_dataset_id][
"lang_dataset_id"
],
path_fasttext_model=self.param_visu_langs[lang_chosen_dataset_id][
"path_fasttext_model"
],
path_sentencepiece_model=self.param_visu_langs[lang_chosen_dataset_id][
"path_sentencepiece_model"
],
path_kenlm_model=self.param_visu_langs[lang_chosen_dataset_id][
"path_kenlm_model"
],
)
visualization_for_lang.visualization_for_lang()
def visualization(self):
self.preamble()
self.warning_preamble()
self.choose_lang()
path_instructions = "./explanation_filtering_pipeline.pdf"
param_visu_langs = {
lang_dataset_id: {
"path_data": f"./{lang_dataset_id}_examples_with_stats.json",
"lang": langs_id.loc[langs_id["dataset_id"] == lang_dataset_id, "lang"].iloc[0],
"num_docs": 5000,
"num_docs_for_words": 500,
"max_len_text_display": 10000,
"lang_dataset_id": lang_dataset_id,
"path_fasttext_model": "./lid.176.bin",
"path_sentencepiece_model": f"./{lang_dataset_id}.sp.model",
"path_kenlm_model": f"./{lang_dataset_id}.arpa.bin",
}
for lang_dataset_id in ["eu", "ca", "zh", "en", "fr", "id", "es"]
}
visualization = Visualization(path_instructions, param_visu_langs)
visualization.visualization()
|