# import torch | |
# from transformers import AutoModelForCausalLM, AutoTokenizer | |
# import gradio as gr | |
# # Load model and tokenizer (using CPU for broader accessibility) | |
# model = AutoModelForCausalLM.from_pretrained("microsoft/phi-2", torch_dtype=torch.float32, device_map="cpu", trust_remote_code=True) | |
# tokenizer = AutoTokenizer.from_pretrained("microsoft/phi-2", trust_remote_code=True) | |
# def generate_text(prompt): | |
# inputs = tokenizer(prompt, return_tensors="pt", return_attention_mask=False) | |
# outputs = model.generate(**inputs, max_length=200) | |
# text = tokenizer.batch_decode(outputs)[0] | |
# return text | |
# # Create Gradio interface | |
# iface = gr.Interface( | |
# fn=generate_text, | |
# inputs=[gr.Textbox(lines=5, label="Enter your prompt")], | |
# outputs="text", | |
# title="PHI-2 Text Generator", | |
# description="Generate text using the PHI-2 generative language model", | |
# ) | |
# # Launch the interface | |
# iface.launch() | |
import gradio as gr | |
from transformers import pipeline | |
pipe = pipeline("text2text-generation", model="yeye776/t5-OndeviceAI-HomeIoT") | |
# gr.load("models/yeye776/t5-OndeviceAI-HomeIoT").launch() | |
iface = gradio.Interface(fn=pipe, inputs="text", outputs="text") | |
iface.launch() |