Run or Build h2oGPT Docker
Setup Docker for CPU Inference
No special docker instructions are required, just follow these instructions to get docker setup at all, i.e.:
sudo apt update
sudo apt install -y apt-transport-https ca-certificates curl software-properties-common
curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo apt-key add -
sudo add-apt-repository "deb [arch=amd64] https://download.docker.com/linux/ubuntu focal stable"
apt-cache policy docker-ce
sudo apt install -y docker-ce
sudo systemctl status docker
Add your user as part of docker
group, exit shell, login back in, and run:
newgrp docker
which avoids having to reboot. Or just reboot to have docker access. If this cannot be done without entering root access, then edit the /etc/group
and add your user to group docker
.
Setup Docker for GPU Inference
Ensure docker installed and ready (requires sudo), can skip if system is already capable of running nvidia containers. Example here is for Ubuntu, see NVIDIA Containers for more examples.
distribution=$(. /etc/os-release;echo $ID$VERSION_ID) \
&& curl -fsSL https://nvidia.github.io/libnvidia-container/gpgkey | sudo gpg --dearmor -o /usr/share/keyrings/nvidia-container-toolkit-keyring.gpg \
&& curl -s -L https://nvidia.github.io/libnvidia-container/$distribution/libnvidia-container.list | \
sed 's#deb https://#deb [signed-by=/usr/share/keyrings/nvidia-container-toolkit-keyring.gpg] https://#g' | \
sudo tee /etc/apt/sources.list.d/nvidia-container-toolkit.list
sudo apt-get update && sudo apt-get install -y nvidia-container-toolkit-base
sudo apt install -y nvidia-container-runtime
sudo nvidia-ctk runtime configure --runtime=docker
sudo systemctl restart docker
Confirm runs nvidia-smi from within docker without errors:
sudo docker run --rm --runtime=nvidia --gpus all ubuntu nvidia-smi
If running on A100's, might require Installing Fabric Manager and Installing GPU Manager.
Run h2oGPT using Docker
All available public h2oGPT docker images can be found in Google Container Registry.
Ensure image is up-to-date by running:
docker pull gcr.io/vorvan/h2oai/h2ogpt-runtime:0.1.0
An example running h2oGPT via docker using Zephyr 7B Beta model is:
mkdir -p ~/.cache
mkdir -p ~/save
mkdir -p ~/user_path
mkdir -p ~/db_dir_UserData
mkdir -p ~/users
mkdir -p ~/db_nonusers
mkdir -p ~/llamacpp_path
mkdir -p ~/h2ogpt_auth
echo '["key1","key2"]' > ~/h2ogpt_auth/h2ogpt_api_keys.json
export GRADIO_SERVER_PORT=7860
docker run \
--gpus all \
--runtime=nvidia \
--shm-size=2g \
-p $GRADIO_SERVER_PORT:$GRADIO_SERVER_PORT \
--rm --init \
--network host \
-v /etc/passwd:/etc/passwd:ro \
-v /etc/group:/etc/group:ro \
-u `id -u`:`id -g` \
-v "${HOME}"/.cache:/workspace/.cache \
-v "${HOME}"/save:/workspace/save \
-v "${HOME}"/user_path:/workspace/user_path \
-v "${HOME}"/db_dir_UserData:/workspace/db_dir_UserData \
-v "${HOME}"/users:/workspace/users \
-v "${HOME}"/db_nonusers:/workspace/db_nonusers \
-v "${HOME}"/llamacpp_path:/workspace/llamacpp_path \
-v "${HOME}"/h2ogpt_auth:/workspace/h2ogpt_auth \
gcr.io/vorvan/h2oai/h2ogpt-runtime:0.1.0 /workspace/generate.py \
--base_model=HuggingFaceH4/zephyr-7b-beta \
--use_safetensors=True \
--prompt_type=zephyr \
--save_dir='/workspace/save/' \
--auth_filename='/workspace/h2ogpt_auth/auth.json'
--h2ogpt_api_keys='/workspace/h2ogpt_auth/h2ogpt_api_keys.json'
--use_gpu_id=False \
--user_path=/workspace/user_path \
--langchain_mode="LLM" \
--langchain_modes="['UserData', 'LLM']" \
--score_model=None \
--max_max_new_tokens=2048 \
--max_new_tokens=1024 \
--use_auth_token="${HUGGING_FACE_HUB_TOKEN}"
Use docker run -d
to run in detached background. Then go to http://localhost:7860/ or http://127.0.0.1:7860/. For authentication, if use --auth=/workspace/h2ogpt_auth/auth.json
instead, then do not need to use --auth_filename
. For keyed access, change key1 and key2 for h2ogpt_api_keys
or for open-access remove --h2ogpt_api_keys
line.
If one does not need access to private repo, can remove --use_auth_token
line, else set env HUGGING_FACE_HUB_TOKEN
so h2oGPT gets the token.
For single GPU use --gpus '"device=0"'
or for 2 GPUs use --gpus '"device=0,1"'
instead of --gpus all
.
See README_GPU for more details about what to run.
Run h2oGPT + vLLM or vLLM using Docker
One can run an inference server in one docker and h2oGPT in another docker.
For the vLLM server running on 2 GPUs using h2oai/h2ogpt-4096-llama2-7b-chat model, run:
docker pull gcr.io/vorvan/h2oai/h2ogpt-runtime:0.1.0
unset CUDA_VISIBLE_DEVICES
mkdir -p $HOME/.cache/huggingface/hub
mkdir -p $HOME/save
docker run \
--runtime=nvidia \
--gpus '"device=0,1"' \
--shm-size=10.24gb \
-p 5000:5000 \
--rm --init \
--entrypoint /h2ogpt_conda/vllm_env/bin/python3.10 \
-e NCCL_IGNORE_DISABLED_P2P=1 \
-v /etc/passwd:/etc/passwd:ro \
-v /etc/group:/etc/group:ro \
-u `id -u`:`id -g` \
-v "${HOME}"/.cache:/workspace/.cache \
--network host \
gcr.io/vorvan/h2oai/h2ogpt-runtime:0.1.0 -m vllm.entrypoints.openai.api_server \
--port=5000 \
--host=0.0.0.0 \
--model=h2oai/h2ogpt-4096-llama2-7b-chat \
--tokenizer=hf-internal-testing/llama-tokenizer \
--tensor-parallel-size=2 \
--seed 1234 \
--trust-remote-code \
--download-dir=/workspace/.cache/huggingface/hub &>> logs.vllm_server.txt
Use docker run -d
to run in detached background.
Checks the logs logs.vllm_server.txt
to make sure server is running.
If ones sees similar output to below, then endpoint it up & running.
INFO: Started server process [7]
INFO: Waiting for application startup.
INFO: Application startup complete.
INFO: Uvicorn running on http://0.0.0.0:5000 (Press CTRL+C to quit
For LLaMa-2 70B AWQ in docker using vLLM run:
docker run -d \
--runtime=nvidia \
--gpus '"device=0,1"' \
--shm-size=10.24gb \
-p 5000:5000 \
--entrypoint /h2ogpt_conda/vllm_env/bin/python3.10 \
-e NCCL_IGNORE_DISABLED_P2P=1 \
-v /etc/passwd:/etc/passwd:ro \
-v /etc/group:/etc/group:ro \
-u `id -u`:`id -g` \
-v "${HOME}"/.cache:/workspace/.cache \
--network host \
gcr.io/vorvan/h2oai/h2ogpt-runtime:0.1.0 -m vllm.entrypoints.openai.api_server \
--port=5000 \
--host=0.0.0.0 \
--model=h2oai/h2ogpt-4096-llama2-70b-chat-4bit \
--tensor-parallel-size=2 \
--seed 1234 \
--trust-remote-code \
--max-num-batched-tokens 8192 \
--quantization awq \
--download-dir=/workspace/.cache/huggingface/hub &>> logs.vllm_server.70b_awq.txt
for choice of port, IP, model, some number of GPUs matching tensor-parallel-size, etc. Can run same thing with 4 GPUs (to be safe) on 4*A10G like more available on AWS.
Curl Test
One can also verify the endpoint by running following curl command.
curl http://localhost:5000/v1/completions \
-H "Content-Type: application/json" \
-d '{
"model": "h2oai/h2ogpt-4096-llama2-7b-chat",
"prompt": "San Francisco is a",
"max_tokens": 7,
"temperature": 0
}'
If one sees similar output to below, then endpoint it up & running.
{
"id": "cmpl-4b9584f743ff4dc590f0c168f82b063b",
"object": "text_completion",
"created": 1692796549,
"model": "h2oai/h2ogpt-4096-llama2-7b-chat",
"choices": [
{
"index": 0,
"text": "city in Northern California that is known",
"logprobs": null,
"finish_reason": "length"
}
],
"usage": {
"prompt_tokens": 5,
"total_tokens": 12,
"completion_tokens": 7
}
}
If one needs to only setup vLLM one can stop here.
Run h2oGPT
Just add to the above docker run command:
--inference_server="vllm:0.0.0.0:5000"
where --base_model
should match for how ran vLLM and h2oGPT. Make sure to set --inference_server
argument to the correct vllm endpoint.
When one is done with the docker instance, run docker ps
and find the container ID's hash, then run docker stop <hash>
.
Follow README_InferenceServers.md for more information on how to setup vLLM.
Run h2oGPT and TGI using Docker
One can run an inference server in one docker and h2oGPT in another docker.
For the TGI server run (e.g. to run on GPU 0)
export MODEL=h2oai/h2ogpt-4096-llama2-7b-chat
docker run -d --gpus '"device=0"' \
--shm-size 1g \
--network host \
-p 6112:80 \
-v $HOME/.cache/huggingface/hub/:/data ghcr.io/huggingface/text-generation-inference:0.9.3 \
--model-id $MODEL \
--max-input-length 4096 \
--max-total-tokens 8192 \
--max-stop-sequences 6 &>> logs.infserver.txt
Each docker can run on any system where network can reach or on same system on different GPUs. E.g. replace --gpus all
with --gpus '"device=0,3"'
to run on GPUs 0 and 3, and note the extra quotes. This multi-device format is required to avoid TGI server getting confused about which GPUs are available.
One a low-memory GPU system can add other options to limit batching, e.g.:
mkdir -p $HOME/.cache/huggingface/hub/
export MODEL=h2oai/h2ogpt-4096-llama2-7b-chat
docker run -d --gpus '"device=0"' \
--shm-size 1g \
-p 6112:80 \
-v $HOME/.cache/huggingface/hub/:/data ghcr.io/huggingface/text-generation-inference:0.9.3 \
--model-id $MODEL \
--max-input-length 1024 \
--max-total-tokens 2048 \
--max-batch-prefill-tokens 2048 \
--max-batch-total-tokens 2048 \
--max-stop-sequences 6 &>> logs.infserver.txt
Then wait till it comes up (e.g. check docker logs for detached container hash in logs.infserver.txt), about 30 seconds for 7B LLaMa2 on 1 GPU. Then for h2oGPT, just run one of the commands like the above, but add to the docker run line:
--inference_server=http://localhost:6112
Note the h2oGPT container has --network host
with same port inside and outside so the other container on same host can see it. Otherwise use actual IP addersses if on separate hosts.
Change max_max_new_tokens
to 2048
for low-memory case.
For maximal summarization performance when connecting to TGI server, auto-detection of file changes in --user_path
every query, and maximum document filling of context, add these options:
--num_async=10 \
--top_k_docs=-1
--detect_user_path_changes_every_query=True
When one is done with the docker instance, run docker ps
and find the container ID's hash, then run docker stop <hash>
.
Follow README_InferenceServers.md for similar (and more) examples of how to launch TGI server using docker.
Make UserData db for generate.py using Docker
To make UserData db for generate.py, put pdfs, etc. into path user_path and run:
mkdir -p ~/.cache
mkdir -p ~/save
mkdir -p ~/user_path
mkdir -p ~/db_dir_UserData
docker run \
--gpus all \
--runtime=nvidia \
--shm-size=2g \
--rm --init \
--network host \
-v /etc/passwd:/etc/passwd:ro \
-v /etc/group:/etc/group:ro \
-u `id -u`:`id -g` \
-v "${HOME}"/.cache:/workspace/.cache \
-v "${HOME}"/save:/workspace/save \
-v "${HOME}"/user_path:/workspace/user_path \
-v "${HOME}"/db_dir_UserData:/workspace/db_dir_UserData \
gcr.io/vorvan/h2oai/h2ogpt-runtime:0.1.0 /workspace/src/make_db.py
Once db is made, can use in generate.py like:
mkdir -p ~/.cache
mkdir -p ~/save
mkdir -p ~/user_path
mkdir -p ~/db_dir_UserData
mkdir -p ~/users
mkdir -p ~/db_nonusers
mkdir -p ~/llamacpp_path
docker run \
--gpus '"device=0"' \
--runtime=nvidia \
--shm-size=2g \
-p 7860:7860 \
--rm --init \
--network host \
-v /etc/passwd:/etc/passwd:ro \
-v /etc/group:/etc/group:ro \
-u `id -u`:`id -g` \
-v "${HOME}"/.cache:/workspace/.cache \
-v "${HOME}"/save:/workspace/save \
-v "${HOME}"/user_path:/workspace/user_path \
-v "${HOME}"/db_dir_UserData:/workspace/db_dir_UserData \
-v "${HOME}"/users:/workspace/users \
-v "${HOME}"/db_nonusers:/workspace/db_nonusers \
-v "${HOME}"/llamacpp_path:/workspace/llamacpp_path \
gcr.io/vorvan/h2oai/h2ogpt-runtime:0.1.0 /workspace/generate.py \
--base_model=h2oai/h2ogpt-4096-llama2-7b-chat \
--use_safetensors=True \
--prompt_type=llama2 \
--save_dir='/workspace/save/' \
--use_gpu_id=False \
--score_model=None \
--max_max_new_tokens=2048 \
--max_new_tokens=1024 \
--langchain_mode=LLM
For a more detailed description of other parameters of the make_db script, checkout the definition in this file: https://github.com/h2oai/h2ogpt/blob/main/src/make_db.py
Build Docker
# build image
touch build_info.txt
docker build -t h2ogpt .
then to run this version of the docker image, just replace gcr.io/vorvan/h2oai/h2ogpt-runtime:0.1.0
with h2ogpt:latest
in above run command.
when any of the prebuilt dependencies are changed, e.g. duckdb or auto-gptq, you need to run make docker_build_deps
or similar code what's in that Makefile target.
Docker Compose Setup & Inference
(optional) Change desired model and weights under
environment
in thedocker-compose.yml
Build and run the container
docker-compose up -d --build
Open
https://localhost:7860
in the browserSee logs:
docker-compose logs -f
Clean everything up:
docker-compose down --volumes --rmi all