Spaces:
Runtime error
Runtime error
# Adapted from https://docs.streamlit.io/knowledge-base/tutorials/build-conversational-apps#build-a-simple-chatbot-gui-with-streaming | |
import os | |
import base64 | |
import gc | |
import random | |
import tempfile | |
import time | |
import uuid | |
import nest_asyncio | |
from dotenv import load_dotenv | |
from IPython.display import Markdown, display | |
from llama_index.core import Settings | |
from llama_index.llms.ollama import Ollama | |
from llama_index.core import PromptTemplate | |
from llama_index.embeddings.huggingface import HuggingFaceEmbedding | |
from llama_index.core.query_engine import RetrieverQueryEngine | |
from llama_index.core import VectorStoreIndex, ServiceContext, SimpleDirectoryReader | |
import streamlit as st | |
if "id" not in st.session_state: | |
st.session_state.id = uuid.uuid4() | |
st.session_state.file_cache = {} | |
session_id = st.session_state.id | |
client = None | |
def reset_chat(): | |
st.session_state.messages = [] | |
st.session_state.context = None | |
gc.collect() | |
def display_pdf(file): | |
# Opening file from file path | |
st.markdown("### PDF Preview") | |
base64_pdf = base64.b64encode(file.read()).decode("utf-8") | |
# Embedding PDF in HTML | |
pdf_display = f"""<iframe src="data:application/pdf;base64,{base64_pdf}" width="400" height="100%" type="application/pdf" | |
style="height:100vh; width:100%" | |
> | |
</iframe>""" | |
# Displaying File | |
st.markdown(pdf_display, unsafe_allow_html=True) | |
with st.sidebar: | |
st.header(f"Add your documents!") | |
uploaded_file = st.file_uploader("Choose your `.pdf` file", type="pdf") | |
if uploaded_file: | |
try: | |
with tempfile.TemporaryDirectory() as temp_dir: | |
file_path = os.path.join(temp_dir, uploaded_file.name) | |
with open(file_path, "wb") as f: | |
f.write(uploaded_file.getvalue()) | |
file_key = f"{session_id}-{uploaded_file.name}" | |
st.write("Indexing your document...") | |
if file_key not in st.session_state.get('file_cache', {}): | |
if os.path.exists(temp_dir): | |
loader = SimpleDirectoryReader( | |
input_dir = temp_dir, | |
required_exts=[".pdf"], | |
recursive=True | |
) | |
else: | |
st.error('Could not find the file you uploaded, please check again...') | |
st.stop() | |
docs = loader.load_data() | |
# setup llm & embedding model | |
llm=Ollama(model="llama3", request_timeout=120.0) | |
embed_model = HuggingFaceEmbedding( model_name="BAAI/bge-large-en-v1.5", trust_remote_code=True) | |
# Creating an index over loaded data | |
Settings.embed_model = embed_model | |
index = VectorStoreIndex.from_documents(docs, show_progress=True) | |
# Create the query engine, where we use a cohere reranker on the fetched nodes | |
Settings.llm = llm | |
query_engine = index.as_query_engine(streaming=True) | |
# ====== Customise prompt template ====== | |
qa_prompt_tmpl_str = ( | |
"Context information is below.\n" | |
"---------------------\n" | |
"{context_str}\n" | |
"---------------------\n" | |
"Given the context information above I want you to think step by step to answer the query in a crisp manner, incase case you don't know the answer say 'I don't know!'.\n" | |
"Query: {query_str}\n" | |
"Answer: " | |
) | |
qa_prompt_tmpl = PromptTemplate(qa_prompt_tmpl_str) | |
query_engine.update_prompts( | |
{"response_synthesizer:text_qa_template": qa_prompt_tmpl} | |
) | |
st.session_state.file_cache[file_key] = query_engine | |
else: | |
query_engine = st.session_state.file_cache[file_key] | |
# Inform the user that the file is processed and Display the PDF uploaded | |
st.success("Ready to Chat!") | |
display_pdf(uploaded_file) | |
except Exception as e: | |
st.error(f"An error occurred: {e}") | |
st.stop() | |
col1, col2 = st.columns([6, 1]) | |
with col1: | |
st.header(f"Chat with Docs using Llama-3") | |
with col2: | |
st.button("Clear ↺", on_click=reset_chat) | |
# Initialize chat history | |
if "messages" not in st.session_state: | |
reset_chat() | |
# Display chat messages from history on app rerun | |
for message in st.session_state.messages: | |
with st.chat_message(message["role"]): | |
st.markdown(message["content"]) | |
# Accept user input | |
if prompt := st.chat_input("What's up?"): | |
# Add user message to chat history | |
st.session_state.messages.append({"role": "user", "content": prompt}) | |
# Display user message in chat message container | |
with st.chat_message("user"): | |
st.markdown(prompt) | |
# Display assistant response in chat message container | |
with st.chat_message("assistant"): | |
message_placeholder = st.empty() | |
full_response = "" | |
# Simulate stream of response with milliseconds delay | |
streaming_response = query_engine.query(prompt) | |
for chunk in streaming_response.response_gen: | |
full_response += chunk | |
message_placeholder.markdown(full_response + "▌") | |
# full_response = query_engine.query(prompt) | |
message_placeholder.markdown(full_response) | |
# st.session_state.context = ctx | |
# Add assistant response to chat history | |
st.session_state.messages.append({"role": "assistant", "content": full_response}) |