RAG_llama3 / app.py
idea123's picture
Update app.py
b94c0d6 verified
# Adapted from https://docs.streamlit.io/knowledge-base/tutorials/build-conversational-apps#build-a-simple-chatbot-gui-with-streaming
import os
import base64
import gc
import random
import tempfile
import time
import uuid
import nest_asyncio
from dotenv import load_dotenv
from IPython.display import Markdown, display
from llama_index.core import Settings
from llama_index.llms.ollama import Ollama
from llama_index.core import PromptTemplate
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
from llama_index.core.query_engine import RetrieverQueryEngine
from llama_index.core import VectorStoreIndex, ServiceContext, SimpleDirectoryReader
import streamlit as st
if "id" not in st.session_state:
st.session_state.id = uuid.uuid4()
st.session_state.file_cache = {}
session_id = st.session_state.id
client = None
def reset_chat():
st.session_state.messages = []
st.session_state.context = None
gc.collect()
def display_pdf(file):
# Opening file from file path
st.markdown("### PDF Preview")
base64_pdf = base64.b64encode(file.read()).decode("utf-8")
# Embedding PDF in HTML
pdf_display = f"""<iframe src="data:application/pdf;base64,{base64_pdf}" width="400" height="100%" type="application/pdf"
style="height:100vh; width:100%"
>
</iframe>"""
# Displaying File
st.markdown(pdf_display, unsafe_allow_html=True)
with st.sidebar:
st.header(f"Add your documents!")
uploaded_file = st.file_uploader("Choose your `.pdf` file", type="pdf")
if uploaded_file:
try:
with tempfile.TemporaryDirectory() as temp_dir:
file_path = os.path.join(temp_dir, uploaded_file.name)
with open(file_path, "wb") as f:
f.write(uploaded_file.getvalue())
file_key = f"{session_id}-{uploaded_file.name}"
st.write("Indexing your document...")
if file_key not in st.session_state.get('file_cache', {}):
if os.path.exists(temp_dir):
loader = SimpleDirectoryReader(
input_dir = temp_dir,
required_exts=[".pdf"],
recursive=True
)
else:
st.error('Could not find the file you uploaded, please check again...')
st.stop()
docs = loader.load_data()
# setup llm & embedding model
llm=Ollama(model="llama3", request_timeout=120.0)
embed_model = HuggingFaceEmbedding( model_name="BAAI/bge-large-en-v1.5", trust_remote_code=True)
# Creating an index over loaded data
Settings.embed_model = embed_model
index = VectorStoreIndex.from_documents(docs, show_progress=True)
# Create the query engine, where we use a cohere reranker on the fetched nodes
Settings.llm = llm
query_engine = index.as_query_engine(streaming=True)
# ====== Customise prompt template ======
qa_prompt_tmpl_str = (
"Context information is below.\n"
"---------------------\n"
"{context_str}\n"
"---------------------\n"
"Given the context information above I want you to think step by step to answer the query in a crisp manner, incase case you don't know the answer say 'I don't know!'.\n"
"Query: {query_str}\n"
"Answer: "
)
qa_prompt_tmpl = PromptTemplate(qa_prompt_tmpl_str)
query_engine.update_prompts(
{"response_synthesizer:text_qa_template": qa_prompt_tmpl}
)
st.session_state.file_cache[file_key] = query_engine
else:
query_engine = st.session_state.file_cache[file_key]
# Inform the user that the file is processed and Display the PDF uploaded
st.success("Ready to Chat!")
display_pdf(uploaded_file)
except Exception as e:
st.error(f"An error occurred: {e}")
st.stop()
col1, col2 = st.columns([6, 1])
with col1:
st.header(f"Chat with Docs using Llama-3")
with col2:
st.button("Clear ↺", on_click=reset_chat)
# Initialize chat history
if "messages" not in st.session_state:
reset_chat()
# Display chat messages from history on app rerun
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.markdown(message["content"])
# Accept user input
if prompt := st.chat_input("What's up?"):
# Add user message to chat history
st.session_state.messages.append({"role": "user", "content": prompt})
# Display user message in chat message container
with st.chat_message("user"):
st.markdown(prompt)
# Display assistant response in chat message container
with st.chat_message("assistant"):
message_placeholder = st.empty()
full_response = ""
# Simulate stream of response with milliseconds delay
streaming_response = query_engine.query(prompt)
for chunk in streaming_response.response_gen:
full_response += chunk
message_placeholder.markdown(full_response + "▌")
# full_response = query_engine.query(prompt)
message_placeholder.markdown(full_response)
# st.session_state.context = ctx
# Add assistant response to chat history
st.session_state.messages.append({"role": "assistant", "content": full_response})