Spaces:
Runtime error
Runtime error
# Import necessary libraries | |
import nest_asyncio | |
import gradio as gr | |
import requests | |
from huggingface_hub import InferenceClient | |
from langchain.chains import LLMChain | |
from langchain.prompts import PromptTemplate | |
from langchain.document_loaders import TextLoader | |
from langchain.embeddings.huggingface import HuggingFaceEmbeddings | |
from langchain.text_splitter import CharacterTextSplitter | |
from langchain.vectorstores import FAISS | |
from langchain.document_loaders import AsyncChromiumLoader | |
from langchain.document_loaders import TextLoader | |
from langchain.embeddings.huggingface import HuggingFaceEmbeddings | |
from langchain.text_splitter import CharacterTextSplitter | |
from langchain.vectorstores import FAISS | |
from langchain.document_loaders import AsyncChromiumLoader | |
# Apply nest_asyncio for asynchronous operations in environments like Jupyter notebooks | |
nest_asyncio.apply() | |
# Initialize the InferenceClient with the specified model | |
client = InferenceClient( | |
"mistralai/Mistral-7B-Instruct-v0.1" | |
) | |
# Set up a prompt template for the model (customize as needed) | |
prompt_template = PromptTemplate() | |
# Define the list of articles to index | |
articles = [ | |
"https://www.fantasypros.com/2023/11/rival-fantasy-nfl-week-10/", | |
"https://www.fantasypros.com/2023/11/5-stats-to-know-before-setting-your-fantasy-lineup-week-10/", | |
"https://www.fantasypros.com/2023/11/nfl-week-10-sleeper-picks-player-predictions-2023/", | |
"https://www.fantasypros.com/2023/11/nfl-dfs-week-10-stacking-advice-picks-2023-fantasy-football/", | |
"https://www.fantasypros.com/2023/11/players-to-buy-low-sell-high-trade-advice-2023-fantasy-football/" | |
] | |
# Scrapes the blogs above | |
loader = AsyncChromiumLoader(articles) | |
docs = loader.load() | |
# Converts HTML to plain text | |
html2text = Html2TextTransformer() | |
docs_transformed = html2text.transform_documents(docs) | |
# Chunk text | |
text_splitter = CharacterTextSplitter(chunk_size=100, | |
chunk_overlap=10) | |
chunked_documents = text_splitter.split_documents(docs_transformed) | |
# Load chunked documents into the FAISS index | |
db = FAISS.from_documents(chunked_documents, | |
HuggingFaceEmbeddings(model_name='sentence-transformers/all-mpnet-base-v2')) | |
retriever = db.as_retriever() | |
# Create the RAG chain by combining the language model with the retriever | |
rag_chain = ({"context": retriever} | LLMChain) | |
# Define the generation function for the Gradio interface | |
def generate( | |
prompt, history, temperature=0.7, max_new_tokens=256, top_p=0.95, repetition_penalty=1.1, | |
): | |
temperature = float(temperature) | |
if temperature < 1e-2: | |
temperature = 1e-2 | |
top_p = float(top_p) | |
generate_kwargs = dict( | |
temperature=temperature, | |
max_new_tokens=max_new_tokens, | |
top_p=top_p, | |
repetition_penalty=repetition_penalty, | |
do_sample=True, | |
seed=42, | |
) | |
formatted_prompt = "<s>" | |
for user_prompt, bot_response in history: | |
formatted_prompt += f"[INST] {user_prompt} [/INST]" | |
formatted_prompt += f" {bot_response}</s> " | |
formatted_prompt += f"[INST] {prompt} [/INST]" | |
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False) | |
output = "" | |
for response in stream: | |
output += response.token.text | |
yield output | |
return output | |
# Define additional input components for the Gradio interface | |
additional_inputs = [ | |
gr.Slider( | |
label="Temperature", | |
value=0.7, | |
minimum=0.0, | |
maximum=1.0, | |
step=0.05, | |
interactive=True, | |
info="Higher values produce more diverse outputs", | |
), | |
gr.Slider( | |
label="Max new tokens", | |
value=256, | |
minimum=0, | |
maximum=1024, | |
step=64, | |
interactive=True, | |
info="The maximum number of new tokens", | |
), | |
gr.Slider( | |
label="Top-p (nucleus sampling)", | |
value=0.95, | |
minimum=0.0, | |
maximum=1, | |
step=0.05, | |
interactive=True, | |
info="Higher values sample more low-probability tokens", | |
), | |
gr.Slider( | |
label="Repetition penalty", | |
value=1.1, | |
minimum=1.0, | |
maximum=2.0, | |
step=0.05, | |
interactive=True, | |
info="Penalize repeated tokens", | |
) | |
] | |
# Define CSS for styling the Gradio interface | |
css = """ | |
#mkd { | |
height: 500px; | |
overflow: auto; | |
border: 1px solid #ccc; | |
} | |
""" | |
# Create the Gradio interface with the chat component | |
with gr.Blocks(css=css) as demo: | |
gr.HTML("<h1><center>Mistral 7B Instruct<h1><center>") | |
gr.HTML("<h3><center>In this demo, you can chat with <a href='https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1'>Mistral-7B-Instruct</a> model. 📜<h3><center>") | |
gr.HTML("<h3><center>Learn more about the model <a href='https://huggingface.co/docs/transformers/main/model_doc/mistral'>here</a>. 📚<h3><center>") | |
gr.ChatInterface( | |
generate, | |
additional_inputs=additional_inputs, | |
examples=[["What is the secret to life?"], ["Write me a recipe for pancakes."]], | |
) | |
# Launch the Gradio interface with debugging enabled | |
demo.queue().launch(debug=True) | |