Spaces:
Runtime error
Runtime error
import os | |
import gradio as gr | |
from transformers import pipeline | |
from pytube import YouTube | |
from datasets import Dataset, Audio | |
from moviepy.editor import AudioFileClip | |
pipe = pipeline(model="irena/whisper-small-sv-SE") | |
def download_from_youtube(url): | |
""" | |
Downloads the video from the given YouTube URL and returns the path to the audio file. | |
""" | |
streams = YouTube(url).streams.filter(only_audio=True, file_extension='mp4') | |
fpath = streams.first().download() | |
return fpath | |
def get_timestamp(seconds): | |
""" | |
Creates %M:%S timestamp from seconds. | |
""" | |
minutes = int(seconds / 60) | |
seconds = int(seconds % 60) | |
return f"{str(minutes).zfill(2)}:{str(seconds).zfill(2)}" | |
def divide_into_30s_segments(audio_fpath, seconds_max): | |
""" | |
Divides the audio file into 30s segments and returns the paths to the segments and the start times of the segments. | |
:param audio_fpath: Path to the audio file. | |
:param seconds_max: Maximum number of seconds to consider. If the audio file is longer than this, it will be truncated. | |
""" | |
if not os.path.exists("segmented_audios"): | |
os.makedirs("segmented_audios") | |
sound = AudioFileClip(audio_fpath) | |
n_full_segments = int(sound.duration / 30) | |
len_last_segment = sound.duration % 30 | |
max_segments = int(seconds_max / 30) | |
if n_full_segments > max_segments: | |
n_full_segments = max_segments | |
len_last_segment = 0 | |
segment_paths = [] | |
segment_start_times = [] | |
segments_available = n_full_segments + 1 | |
for i in range(min(segments_available, max_segments)): | |
start = i * 30 | |
# Skip last segment if it is smaller than two seconds | |
is_last_segment = i == n_full_segments | |
if is_last_segment and not len_last_segment > 2: | |
continue | |
elif is_last_segment: | |
end = start + len_last_segment | |
else: | |
end = (i + 1) * 30 | |
segment_path = os.path.join("segmented_audios", f"segment_{i}.wav") | |
segment = sound.subclip(start, end) | |
segment.write_audiofile(segment_path) | |
segment_paths.append(segment_path) | |
segment_start_times.append(start) | |
return segment_paths, segment_start_times | |
def get_translation(text): | |
""" | |
Translates the given Chinese text to English. | |
""" | |
return "TODO: Make API call to Google Translate to get English translation" | |
def transcribe(audio, url, seconds_max): | |
""" | |
Transcribes a YouTube video if a url is specified and returns the transcription. | |
If not url is specified, it transcribes the audio file as passed by Gradio. | |
:param audio: Audio file as passed by Gradio. Only used if no url is specified. | |
:param url: YouTube URL to transcribe. | |
:param seconds_max: Maximum number of seconds to consider. If the audio file is longer than this, it will be truncated. | |
""" | |
if url: | |
fpath = download_from_youtube(url) | |
segment_paths, segment_start_times = divide_into_30s_segments(fpath, seconds_max) | |
audio_dataset = Dataset.from_dict({"audio": segment_paths}).cast_column("audio", Audio(sampling_rate=16000)) | |
pred = pipe(audio_dataset["audio"]) | |
text = "" | |
n_segments = len(segment_start_times) | |
for i, (seconds, output) in enumerate(zip(segment_start_times, pred)): | |
text += f"[Segment {i+1}/{n_segments}, start time {get_timestamp(seconds)}]\n" | |
text += f"{output['text']}\n" | |
text += f"[Translation]\n{get_translation(output['text'])}\n\n" | |
return text | |
else: | |
text = pipe(audio)["text"] | |
return text | |
block = gr.Interface( | |
fn=transcribe, | |
inputs=[ | |
gr.Audio(source="microphone", type="filepath", label="Transcribe from Microphone"), | |
gr.Text(max_lines=1, placeholder="Enter YouTube Link which has a Chinese video", label="Transcribe from YouTube URL"), | |
gr.Slider(minimum=30, maximum=300, value=30, step=30, label="Number of seconds to transcribe from YouTube URL") | |
], | |
outputs="text", | |
title="Whisper Small Chinese", | |
description="Realtime Chinese speech recognition", | |
) | |
block.launch() | |
''' | |
import os | |
import gradio as gr | |
from transformers import pipeline | |
import gradio as gr | |
import torch | |
import spacy | |
os.system('pip install https://huggingface.co/Armandoliv/es_pipeline/resolve/main/es_pipeline-any-py3-none-any.whl') | |
pipe = pipeline(model="irena/whisper-small-sv-SE") | |
nlp_ner = spacy.load("es_pipeline") | |
def main_generator(youtube_id:str): | |
YouTubeID = youtube_id.split("https://www.youtube.com/watch?v=") # | |
if len(YouTubeID)>1: | |
YouTubeID = YouTubeID[1] | |
else: | |
YouTubeID ='xOZM-1p-jAk' | |
OutputFile = f'test_audio_youtube_{YouTubeID}.m4a' | |
os.system(f"youtube-dl -o {OutputFile} {YouTubeID} --extract-audio --restrict-filenames -f 'bestaudio[ext=m4a]'") | |
result = pipe(OutputFile) | |
text = result['text'] | |
output_list = [] | |
output_list.append(text) | |
return text | |
def transcribe(audio): | |
text = pipe(audio)["text"] | |
return text | |
demo = gr.Blocks() | |
iface = gr.Interface( | |
fn=transcribe, | |
inputs=gr.Audio(source="microphone", type="filepath"), | |
outputs="text", | |
title="Whisper Small Swedish-Microphone", | |
description="Realtime demo for Swedish speech recognition using a fine-tuned Whisper small model. An audio for recognize.", | |
) | |
inputs = [gr.Textbox(lines=1, placeholder="Link of youtube video here...", label="Input")] | |
outputs = gr.HighlightedText() | |
title="Transcription of Swedish videos" | |
description = "This demo uses small Whisper to transcribe what is spoken in a swedish video" | |
examples = ['https://www.youtube.com/watch?v=6eWhV7xYH-Q'] | |
io = gr.Interface(fn=main_generator, inputs=inputs, outputs=outputs, title=title, description = description, examples = examples, | |
css= """.gr-button-primary { background: -webkit-linear-gradient( | |
90deg, #355764 0%, #55a8a1 100% ) !important; background: #355764; | |
background: linear-gradient( | |
90deg, #355764 0%, #55a8a1 100% ) !important; | |
background: -moz-linear-gradient( 90deg, #355764 0%, #55a8a1 100% ) !important; | |
background: -webkit-linear-gradient( | |
90deg, #355764 0%, #55a8a1 100% ) !important; | |
color:white !important}""" | |
) | |
with demo: | |
gr.TabbedInterface([iface, yt], ["Transcribe Audio", "Transcribe YouTube"]) | |
demo.launch(enable_queue=True) | |
''' | |