j-hartmann commited on
Commit
6f38f2e
·
1 Parent(s): 6a48f6a

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +8 -17
app.py CHANGED
@@ -18,7 +18,7 @@ def bulk_function(filename):
18
  return {k: v[idx] for k, v in self.tokenized_texts.items()}
19
 
20
  # load tokenizer and model, create trainer
21
- model_name = "j-hartmann/emotion-english-distilroberta-base"
22
  tokenizer = AutoTokenizer.from_pretrained(model_name)
23
  model = AutoModelForSequenceClassification.from_pretrained(model_name)
24
  trainer = Trainer(model=model)
@@ -78,29 +78,20 @@ def bulk_function(filename):
78
  temp = (np.exp(predictions[0])/np.exp(predictions[0]).sum(-1,keepdims=True))
79
 
80
  # container
81
- anger = []
82
- disgust = []
83
- fear = []
84
- joy = []
85
- neutral = []
86
- sadness = []
87
- surprise = []
88
 
89
  # extract scores (as many entries as exist in pred_texts)
90
  for i in range(len(lines_s)):
91
- anger.append(round(temp[i][0], 3))
92
- disgust.append(round(temp[i][1], 3))
93
- fear.append(round(temp[i][2], 3))
94
- joy.append(round(temp[i][3], 3))
95
- neutral.append(round(temp[i][4], 3))
96
- sadness.append(round(temp[i][5], 3))
97
- surprise.append(round(temp[i][6], 3))
98
 
99
  # define df
100
- df = pd.DataFrame(list(zip(ids,lines_s,labels,scores_rounded, anger, disgust, fear, joy, neutral, sadness, surprise)), columns=[df_input.columns[0], df_input.columns[1],'max_label','max_score', 'anger', 'disgust', 'fear', 'joy', 'neutral', 'sadness', 'surprise'])
101
  print(df)
102
  # save results to csv
103
- YOUR_FILENAME = filename.name.split(".")[0] + "_emotion_predictions" + ".csv" # name your output file
104
  df.to_csv(YOUR_FILENAME, index=False)
105
 
106
  # return dataframe for space output
 
18
  return {k: v[idx] for k, v in self.tokenized_texts.items()}
19
 
20
  # load tokenizer and model, create trainer
21
+ model_name = "j-hartmann/MindMiner-Binary"
22
  tokenizer = AutoTokenizer.from_pretrained(model_name)
23
  model = AutoModelForSequenceClassification.from_pretrained(model_name)
24
  trainer = Trainer(model=model)
 
78
  temp = (np.exp(predictions[0])/np.exp(predictions[0]).sum(-1,keepdims=True))
79
 
80
  # container
81
+ high = []
82
+ low = []
 
 
 
 
 
83
 
84
  # extract scores (as many entries as exist in pred_texts)
85
  for i in range(len(lines_s)):
86
+ high.append(round(temp[i][0], 3))
87
+ low.append(round(temp[i][1], 3))
88
+
 
 
 
 
89
 
90
  # define df
91
+ df = pd.DataFrame(list(zip(ids,lines_s,labels,scores_rounded, high, low)), columns=[df_input.columns[0], df_input.columns[1],'max_label','max_score', 'high', 'low'])
92
  print(df)
93
  # save results to csv
94
+ YOUR_FILENAME = filename.name.split(".")[0] + "_MindMiner_Predictions" + ".csv" # name your output file
95
  df.to_csv(YOUR_FILENAME, index=False)
96
 
97
  # return dataframe for space output