test_space / app.py
Jacob Molnia
Add files via upload
6f9cada unverified
import gradio as gr
from huggingface_hub import InferenceClient
import torch
from transformers import pipeline
# Inference client setup
client = InferenceClient("meta-llama/Meta-Llama-3-8B-Instruct")
pipe = pipeline("text-generation", "microsoft/Phi-3.5-mini-instruct", torch_dtype=torch.bfloat16, device_map="auto")
# Global flag to handle cancellation
stop_inference = False
def respond(
message,
history: list[tuple[str, str]],
system_message="You are a friendly Chatbot. Your job is to assist users in emergencies so reply fast but accuratly.",
max_tokens=2048,
temperature=0.7,
top_p=0.95,
use_local_model=False,
):
global stop_inference
stop_inference = False # Reset cancellation flag
# Initialize history if it's None
if history is None:
history = []
if use_local_model:
# local inference
messages = [{"role": "system", "content": system_message}]
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
messages.append({"role": "user", "content": message})
response = ""
for output in pipe(
messages,
max_new_tokens=max_tokens,
temperature=temperature,
do_sample=True,
top_p=top_p,
):
if stop_inference:
response = "Inference cancelled."
yield history + [(message, response)]
return
token = output['generated_text'][-1]['content']
response += token
yield history + [(message, response)] # Yield history + new response
else:
# API-based inference
messages = [{"role": "system", "content": system_message}]
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
messages.append({"role": "user", "content": message})
response = ""
for message_chunk in client.chat_completion(
messages,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
):
if stop_inference:
response = "Inference cancelled."
yield history + [(message, response)]
return
if stop_inference:
response = "Inference cancelled."
break
token = message_chunk.choices[0].delta.content
response += token
yield history + [(message, response)] # Yield history + new response
def cancel_inference():
global stop_inference
stop_inference = True
def clear_conversation():
return None
# Custom CSS for an enhanced look
custom_css = """
body {
font-family: 'Roboto', sans-serif;
background-color: #f5f7fa;
}
#main-container {
max-width: 900px;
margin: 0 auto;
padding: 20px;
background: white;
box-shadow: 0 4px 12px rgba(0, 0, 0, 0.1);
border-radius: 15px;
}
.gradio-container {
margin-top: 20px;
}
.gr-button {
background-color: #4a90e2;
color: white;
border: none;
border-radius: 5px;
padding: 10px 20px;
cursor: pointer;
transition: all 0.3s ease;
font-weight: bold;
}
.gr-button:hover {
background-color: #357abd;
transform: translateY(-2px);
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1);
}
.gr-button.secondary {
background-color: #f0f0f0;
color: #333;
}
.gr-button.secondary:hover {
background-color: #e0e0e0;
}
.gr-button.cancel {
background-color: #e74c3c;
}
.gr-button.cancel:hover {
background-color: #c0392b;
}
.gr-form {
border: 1px solid #e0e0e0;
padding: 15px;
border-radius: 10px;
background-color: #f9f9f9;
}
.gr-box {
border-radius: 8px;
border: 1px solid #e0e0e0;
}
.gr-padded {
padding: 15px;
}
.gr-chat {
font-size: 16px;
border: 1px solid #e0e0e0;
border-radius: 10px;
overflow: hidden;
}
.gr-chat .message {
padding: 10px 15px;
border-bottom: 1px solid #f0f0f0;
}
.gr-chat .user {
background-color: #e8f0fe;
}
.gr-chat .bot {
background-color: #ffffff;
}
#title {
text-align: center;
font-size: 2.5em;
margin-bottom: 20px;
color: #2c3e50;
text-shadow: 1px 1px 2px rgba(0,0,0,0.1);
}
"""
# Define the interface
with gr.Blocks(css=custom_css) as demo:
gr.Markdown("<h1 id='title'>πŸ€– EMERGENCY RESPONSE BOT πŸš€</h1>")
gr.Markdown("Engage in a conversation with our AI chatbot using customizable settings. \n It's a demo bot for a emergency response system. \n NOTE: This bot was made for educational purposes only and should not be used in real emergencies.")
with gr.Row():
with gr.Column(scale=2):
chat_history = gr.Chatbot(label="Chat", height=500)
user_input = gr.Textbox(show_label=False, placeholder="Type your message here...", lines=2)
with gr.Row():
submit_button = gr.Button("Send", variant="primary")
cancel_button = gr.Button("Cancel", variant="stop")
clear_button = gr.Button("Clear Chat", variant="secondary")
with gr.Column(scale=1):
with gr.Accordion("Advanced Settings", open=False):
system_message = gr.Textbox(value="You are a friendly Chatbot.", label="System message", interactive=True)
use_local_model = gr.Checkbox(label="Use Local Model", value=False)
max_tokens = gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens")
temperature = gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature")
top_p = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)")
with gr.Accordion("Chat Information", open=True):
message_count = gr.Number(label="Messages in Conversation", value=0, interactive=False)
word_count = gr.Number(label="Total Words", value=0, interactive=False)
# Event handlers
submit_button.click(respond,
[user_input, chat_history, system_message, max_tokens, temperature, top_p, use_local_model],
[chat_history])
user_input.submit(respond,
[user_input, chat_history, system_message, max_tokens, temperature, top_p, use_local_model],
[chat_history])
cancel_button.click(cancel_inference)
clear_button.click(clear_conversation, outputs=[chat_history])
# Update chat information
def update_chat_info(history):
if history is None:
return 0, 0
message_count = len(history)
word_count = sum(len(msg[0].split()) + len(msg[1].split()) for msg in history)
return message_count, word_count
chat_history.change(update_chat_info, inputs=[chat_history], outputs=[message_count, word_count])
if __name__ == "__main__":
demo.launch(share=False) # Remove share=True because it's not supported on HF Spaces