Spaces:
Running
on
Zero
Running
on
Zero
File size: 4,529 Bytes
00710e8 88b9835 67d69a3 632c209 ad85111 75f2ed4 67d69a3 a84e446 75f2ed4 00710e8 88b9835 67d69a3 01dd5e7 21eda87 396f6f7 67d69a3 396f6f7 01dd5e7 75f2ed4 88b9835 67d69a3 75f2ed4 3ef9484 01dd5e7 75f2ed4 88b9835 75f2ed4 3ef9484 1435716 75f2ed4 88b9835 ff73241 9edbc68 75f2ed4 424869b ab16048 1eb8136 ab16048 01dd5e7 ab16048 424869b 01dd5e7 ab16048 1b4b422 ab16048 01dd5e7 ab16048 de50edd d7dfcb6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 |
import os
import time
import datetime
from tqdm import tqdm
import spaces
import torch
import torch.optim as optim
import gradio as gr
from utils import load_img, load_img_from_path, save_img
from vgg19 import VGG_19
if torch.cuda.is_available(): device = 'cuda'
elif torch.backends.mps.is_available(): device = 'mps'
else: device = 'cpu'
print('DEVICE:', device)
model = VGG_19().to(device)
for param in model.parameters():
param.requires_grad = False
style_files = os.listdir('./style_images')
style_options = {' '.join(style_file.split('.')[0].split('_')): f'./style_images/{style_file}' for style_file in style_files}
@spaces.GPU(duration=35)
def inference(content_image, style_image, style_strength, progress=gr.Progress(track_tqdm=True)):
yield None
print('-'*15)
print('DATETIME:', datetime.datetime.now())
print('STYLE:', style_image)
img_size = 512
content_img, original_size = load_img(content_image, img_size)
content_img = content_img.to(device)
style_img = load_img_from_path(style_options[style_image], img_size)[0].to(device)
print('CONTENT IMG SIZE:', original_size)
print('STYLE STRENGTH:', style_strength)
iters = style_strength
lr = 5e-2
alpha = 1
beta = 1
st = time.time()
generated_img = content_img.clone().requires_grad_(True)
optimizer = optim.Adam([generated_img], lr=lr)
for _ in tqdm(range(iters), desc='The magic is happening ✨'):
generated_features = model(generated_img)
content_features = model(content_img)
style_features = model(style_img)
content_loss = 0
style_loss = 0
for generated_feature, content_feature, style_feature in zip(generated_features, content_features, style_features):
batch_size, n_feature_maps, height, width = generated_feature.size()
content_loss += (torch.mean((generated_feature - content_feature) ** 2))
G = torch.mm((generated_feature.view(batch_size * n_feature_maps, height * width)), (generated_feature.view(batch_size * n_feature_maps, height * width)).t())
A = torch.mm((style_feature.view(batch_size * n_feature_maps, height * width)), (style_feature.view(batch_size * n_feature_maps, height * width)).t())
E_l = ((G - A) ** 2)
w_l = 1/5
style_loss += torch.mean(w_l * E_l)
total_loss = alpha * content_loss + beta * style_loss
optimizer.zero_grad()
total_loss.backward()
optimizer.step()
et = time.time()
print('TIME TAKEN:', et-st)
yield save_img(generated_img, original_size)
def set_slider(value):
return gr.update(value=value)
css = """
#container {
margin: 0 auto;
max-width: 550px;
}
"""
with gr.Blocks(css=css) as demo:
gr.HTML("<h1 style='text-align: center; padding: 10px'>🖼️ Neural Style Transfer</h1>")
with gr.Column(elem_id='container'):
content_and_output = gr.Image(show_label=False, type='pil', sources=['upload'], format='jpg')
style_dropdown = gr.Radio(choices=list(style_options.keys()), label='Choose a style', value='Starry Night', type='value')
with gr.Accordion('Adjustments', open=False):
with gr.Group():
style_strength_slider = gr.Slider(label='Style Strength', minimum=1, maximum=100, step=1, value=50)
with gr.Row():
low_button = gr.Button('Low').click(fn=lambda: set_slider(10), outputs=[style_strength_slider])
medium_button = gr.Button('Medium').click(fn=lambda: set_slider(50), outputs=[style_strength_slider])
high_button = gr.Button('High').click(fn=lambda: set_slider(100), outputs=[style_strength_slider])
submit_button = gr.Button('Submit')
submit_button.click(fn=inference, inputs=[content_and_output, style_dropdown, style_strength_slider], outputs=[content_and_output])
examples = gr.Examples(
examples=[
['./content_images/TajMahal.jpg', 'Starry Night', 75, False],
['./content_images/GoldenRetriever.jpg', 'Lego Bricks', 50, False],
['./content_images/SeaTurtle.jpg', 'Mosaic', 100, False]
],
inputs=[content_and_output, style_dropdown, style_strength_slider]
)
# disable queue
demo.queue = False
demo.config['queue'] = False
demo.launch(show_api=True, allowed_paths=['/tmp/gradio/']) |