jamino30's picture
Upload folder using huggingface_hub
01dd5e7 verified
raw
history blame
4.53 kB
import os
import time
import datetime
from tqdm import tqdm
import spaces
import torch
import torch.optim as optim
import gradio as gr
from utils import load_img, load_img_from_path, save_img
from vgg19 import VGG_19
if torch.cuda.is_available(): device = 'cuda'
elif torch.backends.mps.is_available(): device = 'mps'
else: device = 'cpu'
print('DEVICE:', device)
model = VGG_19().to(device)
for param in model.parameters():
param.requires_grad = False
style_files = os.listdir('./style_images')
style_options = {' '.join(style_file.split('.')[0].split('_')): f'./style_images/{style_file}' for style_file in style_files}
@spaces.GPU(duration=35)
def inference(content_image, style_image, style_strength, progress=gr.Progress(track_tqdm=True)):
yield None
print('-'*15)
print('DATETIME:', datetime.datetime.now())
print('STYLE:', style_image)
img_size = 512
content_img, original_size = load_img(content_image, img_size)
content_img = content_img.to(device)
style_img = load_img_from_path(style_options[style_image], img_size)[0].to(device)
print('CONTENT IMG SIZE:', original_size)
print('STYLE STRENGTH:', style_strength)
iters = style_strength
lr = 5e-2
alpha = 1
beta = 1
st = time.time()
generated_img = content_img.clone().requires_grad_(True)
optimizer = optim.Adam([generated_img], lr=lr)
for _ in tqdm(range(iters), desc='The magic is happening ✨'):
generated_features = model(generated_img)
content_features = model(content_img)
style_features = model(style_img)
content_loss = 0
style_loss = 0
for generated_feature, content_feature, style_feature in zip(generated_features, content_features, style_features):
batch_size, n_feature_maps, height, width = generated_feature.size()
content_loss += (torch.mean((generated_feature - content_feature) ** 2))
G = torch.mm((generated_feature.view(batch_size * n_feature_maps, height * width)), (generated_feature.view(batch_size * n_feature_maps, height * width)).t())
A = torch.mm((style_feature.view(batch_size * n_feature_maps, height * width)), (style_feature.view(batch_size * n_feature_maps, height * width)).t())
E_l = ((G - A) ** 2)
w_l = 1/5
style_loss += torch.mean(w_l * E_l)
total_loss = alpha * content_loss + beta * style_loss
optimizer.zero_grad()
total_loss.backward()
optimizer.step()
et = time.time()
print('TIME TAKEN:', et-st)
yield save_img(generated_img, original_size)
def set_slider(value):
return gr.update(value=value)
css = """
#container {
margin: 0 auto;
max-width: 550px;
}
"""
with gr.Blocks(css=css) as demo:
gr.HTML("<h1 style='text-align: center; padding: 10px'>🖼️ Neural Style Transfer</h1>")
with gr.Column(elem_id='container'):
content_and_output = gr.Image(show_label=False, type='pil', sources=['upload'], format='jpg')
style_dropdown = gr.Radio(choices=list(style_options.keys()), label='Choose a style', value='Starry Night', type='value')
with gr.Accordion('Adjustments', open=False):
with gr.Group():
style_strength_slider = gr.Slider(label='Style Strength', minimum=1, maximum=100, step=1, value=50)
with gr.Row():
low_button = gr.Button('Low').click(fn=lambda: set_slider(10), outputs=[style_strength_slider])
medium_button = gr.Button('Medium').click(fn=lambda: set_slider(50), outputs=[style_strength_slider])
high_button = gr.Button('High').click(fn=lambda: set_slider(100), outputs=[style_strength_slider])
submit_button = gr.Button('Submit')
submit_button.click(fn=inference, inputs=[content_and_output, style_dropdown, style_strength_slider], outputs=[content_and_output])
examples = gr.Examples(
examples=[
['./content_images/TajMahal.jpg', 'Starry Night', 75, False],
['./content_images/GoldenRetriever.jpg', 'Lego Bricks', 50, False],
['./content_images/SeaTurtle.jpg', 'Mosaic', 100, False]
],
inputs=[content_and_output, style_dropdown, style_strength_slider]
)
# disable queue
demo.queue = False
demo.config['queue'] = False
demo.launch(show_api=True, allowed_paths=['/tmp/gradio/'])