jamino30's picture
Upload folder using huggingface_hub
00710e8 verified
raw
history blame
6.21 kB
import os
import time
from PIL import Image
from tqdm import tqdm
import spaces
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision.transforms as transforms
import torchvision.models as models
import gradio as gr
if torch.cuda.is_available(): device = 'cuda'
elif torch.backends.mps.is_available(): device = 'mps'
else: device = 'cpu'
print('DEVICE:', device)
class VGG_19(nn.Module):
def __init__(self):
super(VGG_19, self).__init__()
self.model = models.vgg19(pretrained=True).features[:30]
for i, _ in enumerate(self.model):
if i in [4, 9, 18, 27]:
self.model[i] = nn.AvgPool2d(kernel_size=2, stride=2, padding=0)
def forward(self, x):
features = []
for i, layer in enumerate(self.model):
x = layer(x)
if i in [0, 5, 10, 19, 28]:
features.append(x)
return features
model = VGG_19().to(device)
for param in model.parameters():
param.requires_grad = False
def load_img(img: Image, img_size):
original_size = img.size
transform = transforms.Compose([
transforms.Resize((img_size, img_size)),
transforms.ToTensor()
])
img = transform(img).unsqueeze(0)
return img, original_size
def load_img_from_path(path_to_image, img_size):
img = Image.open(path_to_image)
original_size = img.size
transform = transforms.Compose([
transforms.Resize((img_size, img_size)),
transforms.ToTensor()
])
img = transform(img).unsqueeze(0)
return img, original_size
def save_img(img, original_size):
img = img.cpu().clone()
img = img.squeeze(0)
# address tensor value scaling and quantization
img = torch.clamp(img, 0, 1)
img = img.mul(255).byte()
unloader = transforms.ToPILImage()
img = unloader(img)
img = img.resize(original_size, Image.Resampling.LANCZOS)
return img
style_files = os.listdir('./style_images')
style_options = {' '.join(style_file.split('.')[0].split('_')): f'./style_images/{style_file}' for style_file in style_files}
@spaces.GPU(duration=30)
def inference(content_image, style_image, style_strength, output_quality, progress=gr.Progress(track_tqdm=True)):
yield None
print('-'*15)
print('STYLE:', style_image)
img_size = 1024 if output_quality else 512
content_img, original_size = load_img(content_image, img_size)
content_img = content_img.to(device)
style_img = load_img_from_path(style_options[style_image], img_size)[0].to(device)
print('CONTENT IMG SIZE:', original_size)
iters = style_strength
lr = 1e-1
alpha = 1
beta = 1
st = time.time()
generated_img = content_img.clone().requires_grad_(True)
optimizer = optim.Adam([generated_img], lr=lr)
for _ in tqdm(range(iters), desc='The magic is happening ✨'):
generated_features = model(generated_img)
content_features = model(content_img)
style_features = model(style_img)
content_loss = 0
style_loss = 0
for generated_feature, content_feature, style_feature in zip(generated_features, content_features, style_features):
batch_size, n_feature_maps, height, width = generated_feature.size()
content_loss += (torch.mean((generated_feature - content_feature) ** 2))
G = torch.mm((generated_feature.view(batch_size * n_feature_maps, height * width)), (generated_feature.view(batch_size * n_feature_maps, height * width)).t())
A = torch.mm((style_feature.view(batch_size * n_feature_maps, height * width)), (style_feature.view(batch_size * n_feature_maps, height * width)).t())
E_l = ((G - A) ** 2)
w_l = 1/5
style_loss += torch.mean(w_l * E_l)
total_loss = alpha * content_loss + beta * style_loss
optimizer.zero_grad()
total_loss.backward()
optimizer.step()
et = time.time()
print('TIME TAKEN:', et-st)
yield save_img(generated_img, original_size)
def set_slider(value):
return gr.update(value=value)
css = """
#container {
margin: 0 auto;
max-width: 550px;
}
"""
with gr.Blocks(css=css) as demo:
gr.HTML("<h1 style='text-align: center; padding: 10px'>🖼️ Neural Style Transfer</h1>")
with gr.Column(elem_id='container'):
content_and_output = gr.Image(show_label=False, type='pil', sources=['upload'], format='jpg')
style_dropdown = gr.Radio(choices=list(style_options.keys()), label='Choose a style', value='Starry Night', type='value')
with gr.Accordion('Adjustments', open=False):
with gr.Group():
style_strength_slider = gr.Slider(label='Style Strength', minimum=0, maximum=100, step=5, value=50)
with gr.Row():
low_button = gr.Button('Low').click(fn=lambda: set_slider(10), outputs=[style_strength_slider])
medium_button = gr.Button('Medium').click(fn=lambda: set_slider(50), outputs=[style_strength_slider])
high_button = gr.Button('High').click(fn=lambda: set_slider(100), outputs=[style_strength_slider])
with gr.Group():
output_quality = gr.Checkbox(label='High Quality', info='Note: This takes longer, but improves output image quality')
submit_button = gr.Button('Submit')
submit_button.click(fn=inference, inputs=[content_and_output, style_dropdown, style_strength_slider, output_quality], outputs=[content_and_output])
examples = gr.Examples(
examples=[
['./content_images/TajMahal.jpg', 'Starry Night', 75, False],
['./content_images/GoldenRetriever.jpg', 'Lego Bricks', 50, False],
['./content_images/SeaTurtle.jpg', 'Mosaic', 100, False]
],
inputs=[content_and_output, style_dropdown, style_strength_slider, output_quality]
)
# disable queue
demo.queue = False
demo.config['queue'] = False
demo.launch(show_api=True, allowed_paths=['/tmp/gradio/'])