|
# Text generation web UI |
|
|
|
A Gradio web UI for Large Language Models. |
|
|
|
Its goal is to become the [AUTOMATIC1111/stable-diffusion-webui](https://github.com/AUTOMATIC1111/stable-diffusion-webui) of text generation. |
|
|
|
|![Image1](https://github.com/oobabooga/screenshots/raw/main/print_instruct.png) | ![Image2](https://github.com/oobabooga/screenshots/raw/main/print_chat.png) | |
|
|:---:|:---:| |
|
|![Image1](https://github.com/oobabooga/screenshots/raw/main/print_default.png) | ![Image2](https://github.com/oobabooga/screenshots/raw/main/print_parameters.png) | |
|
|
|
## Features |
|
|
|
* 3 interface modes: default (two columns), notebook, and chat |
|
* Multiple model backends: [transformers](https://github.com/huggingface/transformers), [llama.cpp](https://github.com/ggerganov/llama.cpp), [ExLlama](https://github.com/turboderp/exllama), [AutoGPTQ](https://github.com/PanQiWei/AutoGPTQ), [GPTQ-for-LLaMa](https://github.com/qwopqwop200/GPTQ-for-LLaMa), [ctransformers](https://github.com/marella/ctransformers) |
|
* Dropdown menu for quickly switching between different models |
|
* LoRA: load and unload LoRAs on the fly, train a new LoRA using QLoRA |
|
* Precise instruction templates for chat mode, including Llama-2-chat, Alpaca, Vicuna, WizardLM, StableLM, and many others |
|
* 4-bit, 8-bit, and CPU inference through the transformers library |
|
* Use llama.cpp models with transformers samplers (`llamacpp_HF` loader) |
|
* [Multimodal pipelines, including LLaVA and MiniGPT-4](https://github.com/oobabooga/text-generation-webui/tree/main/extensions/multimodal) |
|
* [Extensions framework](docs/Extensions.md) |
|
* [Custom chat characters](docs/Chat-mode.md) |
|
* Very efficient text streaming |
|
* Markdown output with LaTeX rendering, to use for instance with [GALACTICA](https://github.com/paperswithcode/galai) |
|
* API, including endpoints for websocket streaming ([see the examples](https://github.com/oobabooga/text-generation-webui/blob/main/api-examples)) |
|
|
|
To learn how to use the various features, check out the Documentation: https://github.com/oobabooga/text-generation-webui/tree/main/docs |
|
|
|
## Installation |
|
|
|
### One-click installers |
|
|
|
| Windows | Linux | macOS | WSL | |
|
|--------|--------|--------|--------| |
|
| [oobabooga-windows.zip](https://github.com/oobabooga/text-generation-webui/releases/download/installers/oobabooga_windows.zip) | [oobabooga-linux.zip](https://github.com/oobabooga/text-generation-webui/releases/download/installers/oobabooga_linux.zip) |[oobabooga-macos.zip](https://github.com/oobabooga/text-generation-webui/releases/download/installers/oobabooga_macos.zip) | [oobabooga-wsl.zip](https://github.com/oobabooga/text-generation-webui/releases/download/installers/oobabooga_wsl.zip) | |
|
|
|
Just download the zip above, extract it, and double-click on "start". The web UI and all its dependencies will be installed in the same folder. |
|
|
|
* The source codes and more information can be found here: https://github.com/oobabooga/one-click-installers |
|
* There is no need to run the installers as admin. |
|
* Huge thanks to [@jllllll](https://github.com/jllllll), [@ClayShoaf](https://github.com/ClayShoaf), and [@xNul](https://github.com/xNul) for their contributions to these installers. |
|
|
|
### Manual installation using Conda |
|
|
|
Recommended if you have some experience with the command-line. |
|
|
|
#### 0. Install Conda |
|
|
|
https://docs.conda.io/en/latest/miniconda.html |
|
|
|
On Linux or WSL, it can be automatically installed with these two commands ([source](https://educe-ubc.github.io/conda.html)): |
|
|
|
``` |
|
curl -sL "https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh" > "Miniconda3.sh" |
|
bash Miniconda3.sh |
|
``` |
|
|
|
#### 1. Create a new conda environment |
|
|
|
``` |
|
conda create -n textgen python=3.10.9 |
|
conda activate textgen |
|
``` |
|
|
|
#### 2. Install Pytorch |
|
|
|
| System | GPU | Command | |
|
|--------|---------|---------| |
|
| Linux/WSL | NVIDIA | `pip3 install torch torchvision torchaudio` | |
|
| Linux/WSL | CPU only | `pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cpu` | |
|
| Linux | AMD | `pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/rocm5.4.2` | |
|
| MacOS + MPS | Any | `pip3 install torch torchvision torchaudio` | |
|
| Windows | NVIDIA | `pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu117` | |
|
| Windows | CPU only | `pip3 install torch torchvision torchaudio` | |
|
|
|
The up-to-date commands can be found here: https://pytorch.org/get-started/locally/. |
|
|
|
#### 3. Install the web UI |
|
|
|
``` |
|
git clone https://github.com/oobabooga/text-generation-webui |
|
cd text-generation-webui |
|
pip install -r requirements.txt |
|
``` |
|
|
|
#### AMD, Metal, Intel Arc, and CPUs without AVCX2 |
|
|
|
1) Replace the last command above with |
|
|
|
``` |
|
pip install -r requirements_nocuda.txt |
|
``` |
|
|
|
2) Manually install llama-cpp-python using the appropriate command for your hardware: [Installation from PyPI](https://github.com/abetlen/llama-cpp-python#installation-from-pypi). |
|
|
|
3) AMD: Manually install AutoGPTQ: [Installation](https://github.com/PanQiWei/AutoGPTQ#installation). |
|
|
|
4) AMD: Manually install [ExLlama](https://github.com/turboderp/exllama) by simply cloning it into the `repositories` folder (it will be automatically compiled at runtime after that): |
|
|
|
``` |
|
cd text-generation-webui |
|
mkdir repositories |
|
cd repositories |
|
git clone https://github.com/turboderp/exllama |
|
``` |
|
|
|
#### bitsandbytes on older NVIDIA GPUs |
|
|
|
bitsandbytes >= 0.39 may not work. In that case, to use `--load-in-8bit`, you may have to downgrade like this: |
|
|
|
* Linux: `pip install bitsandbytes==0.38.1` |
|
* Windows: `pip install https://github.com/jllllll/bitsandbytes-windows-webui/raw/main/bitsandbytes-0.38.1-py3-none-any.whl` |
|
|
|
### Alternative: Docker |
|
|
|
``` |
|
ln -s docker/{Dockerfile,docker-compose.yml,.dockerignore} . |
|
cp docker/.env.example .env |
|
# Edit .env and set TORCH_CUDA_ARCH_LIST based on your GPU model |
|
docker compose up --build |
|
``` |
|
|
|
* You need to have docker compose v2.17 or higher installed. See [this guide](https://github.com/oobabooga/text-generation-webui/blob/main/docs/Docker.md) for instructions. |
|
* For additional docker files, check out [this repository](https://github.com/Atinoda/text-generation-webui-docker). |
|
|
|
### Updating the requirements |
|
|
|
From time to time, the `requirements.txt` changes. To update, use these commands: |
|
|
|
``` |
|
conda activate textgen |
|
cd text-generation-webui |
|
pip install -r requirements.txt --upgrade |
|
``` |
|
|
|
## Downloading models |
|
|
|
Models should be placed in the `text-generation-webui/models` folder. They are usually downloaded from [Hugging Face](https://huggingface.co/models?pipeline_tag=text-generation&sort=downloads). |
|
|
|
* Transformers or GPTQ models are made of several files and must be placed in a subfolder. Example: |
|
|
|
``` |
|
text-generation-webui |
|
βββ models |
|
βΒ Β βββ lmsys_vicuna-33b-v1.3 |
|
βΒ Β βΒ Β βββ config.json |
|
βΒ Β βΒ Β βββ generation_config.json |
|
βΒ Β βΒ Β βββ pytorch_model-00001-of-00007.bin |
|
βΒ Β βΒ Β βββ pytorch_model-00002-of-00007.bin |
|
βΒ Β βΒ Β βββ pytorch_model-00003-of-00007.bin |
|
βΒ Β βΒ Β βββ pytorch_model-00004-of-00007.bin |
|
βΒ Β βΒ Β βββ pytorch_model-00005-of-00007.bin |
|
βΒ Β βΒ Β βββ pytorch_model-00006-of-00007.bin |
|
βΒ Β βΒ Β βββ pytorch_model-00007-of-00007.bin |
|
βΒ Β βΒ Β βββ pytorch_model.bin.index.json |
|
βΒ Β βΒ Β βββ special_tokens_map.json |
|
βΒ Β βΒ Β βββ tokenizer_config.json |
|
βΒ Β βΒ Β βββ tokenizer.model |
|
``` |
|
|
|
* GGML/GGUF models are a single file and should be placed directly into `models`. Example: |
|
|
|
``` |
|
text-generation-webui |
|
βββ models |
|
βΒ Β βββ llama-13b.ggmlv3.q4_K_M.bin |
|
``` |
|
|
|
In both cases, you can use the "Model" tab of the UI to download the model from Hugging Face automatically. It is also possible to download via the command-line with `python download-model.py organization/model` (use `--help` to see all the options). |
|
|
|
#### GPT-4chan |
|
|
|
<details> |
|
<summary> |
|
Instructions |
|
</summary> |
|
|
|
[GPT-4chan](https://huggingface.co/ykilcher/gpt-4chan) has been shut down from Hugging Face, so you need to download it elsewhere. You have two options: |
|
|
|
* Torrent: [16-bit](https://archive.org/details/gpt4chan_model_float16) / [32-bit](https://archive.org/details/gpt4chan_model) |
|
* Direct download: [16-bit](https://theswissbay.ch/pdf/_notpdf_/gpt4chan_model_float16/) / [32-bit](https://theswissbay.ch/pdf/_notpdf_/gpt4chan_model/) |
|
|
|
The 32-bit version is only relevant if you intend to run the model in CPU mode. Otherwise, you should use the 16-bit version. |
|
|
|
After downloading the model, follow these steps: |
|
|
|
1. Place the files under `models/gpt4chan_model_float16` or `models/gpt4chan_model`. |
|
2. Place GPT-J 6B's config.json file in that same folder: [config.json](https://huggingface.co/EleutherAI/gpt-j-6B/raw/main/config.json). |
|
3. Download GPT-J 6B's tokenizer files (they will be automatically detected when you attempt to load GPT-4chan): |
|
|
|
``` |
|
python download-model.py EleutherAI/gpt-j-6B --text-only |
|
``` |
|
|
|
When you load this model in default or notebook modes, the "HTML" tab will show the generated text in 4chan format: |
|
|
|
![Image3](https://github.com/oobabooga/screenshots/raw/main/gpt4chan.png) |
|
|
|
</details> |
|
|
|
## Starting the web UI |
|
|
|
conda activate textgen |
|
cd text-generation-webui |
|
python server.py |
|
|
|
Then browse to |
|
|
|
`http://localhost:7860/?__theme=dark` |
|
|
|
Optionally, you can use the following command-line flags: |
|
|
|
#### Basic settings |
|
|
|
| Flag | Description | |
|
|--------------------------------------------|-------------| |
|
| `-h`, `--help` | Show this help message and exit. | |
|
| `--multi-user` | Multi-user mode. Chat histories are not saved or automatically loaded. WARNING: this is highly experimental. | |
|
| `--character CHARACTER` | The name of the character to load in chat mode by default. | |
|
| `--model MODEL` | Name of the model to load by default. | |
|
| `--lora LORA [LORA ...]` | The list of LoRAs to load. If you want to load more than one LoRA, write the names separated by spaces. | |
|
| `--model-dir MODEL_DIR` | Path to directory with all the models. | |
|
| `--lora-dir LORA_DIR` | Path to directory with all the loras. | |
|
| `--model-menu` | Show a model menu in the terminal when the web UI is first launched. | |
|
| `--settings SETTINGS_FILE` | Load the default interface settings from this yaml file. See `settings-template.yaml` for an example. If you create a file called `settings.yaml`, this file will be loaded by default without the need to use the `--settings` flag. | |
|
| `--extensions EXTENSIONS [EXTENSIONS ...]` | The list of extensions to load. If you want to load more than one extension, write the names separated by spaces. | |
|
| `--verbose` | Print the prompts to the terminal. | |
|
|
|
#### Model loader |
|
|
|
| Flag | Description | |
|
|--------------------------------------------|-------------| |
|
| `--loader LOADER` | Choose the model loader manually, otherwise, it will get autodetected. Valid options: transformers, autogptq, gptq-for-llama, exllama, exllama_hf, llamacpp, rwkv, ctransformers | |
|
|
|
#### Accelerate/transformers |
|
|
|
| Flag | Description | |
|
|---------------------------------------------|-------------| |
|
| `--cpu` | Use the CPU to generate text. Warning: Training on CPU is extremely slow.| |
|
| `--auto-devices` | Automatically split the model across the available GPU(s) and CPU. | |
|
| `--gpu-memory GPU_MEMORY [GPU_MEMORY ...]` | Maximum GPU memory in GiB to be allocated per GPU. Example: `--gpu-memory 10` for a single GPU, `--gpu-memory 10 5` for two GPUs. You can also set values in MiB like `--gpu-memory 3500MiB`. | |
|
| `--cpu-memory CPU_MEMORY` | Maximum CPU memory in GiB to allocate for offloaded weights. Same as above.| |
|
| `--disk` | If the model is too large for your GPU(s) and CPU combined, send the remaining layers to the disk. | |
|
| `--disk-cache-dir DISK_CACHE_DIR` | Directory to save the disk cache to. Defaults to `cache/`. | |
|
| `--load-in-8bit` | Load the model with 8-bit precision (using bitsandbytes).| |
|
| `--bf16` | Load the model with bfloat16 precision. Requires NVIDIA Ampere GPU. | |
|
| `--no-cache` | Set `use_cache` to False while generating text. This reduces the VRAM usage a bit with a performance cost. | |
|
| `--xformers` | Use xformer's memory efficient attention. This should increase your tokens/s. | |
|
| `--sdp-attention` | Use torch 2.0's sdp attention. | |
|
| `--trust-remote-code` | Set trust_remote_code=True while loading a model. Necessary for ChatGLM and Falcon. | |
|
|
|
#### Accelerate 4-bit |
|
|
|
β οΈ Requires minimum compute of 7.0 on Windows at the moment. |
|
|
|
| Flag | Description | |
|
|---------------------------------------------|-------------| |
|
| `--load-in-4bit` | Load the model with 4-bit precision (using bitsandbytes). | |
|
| `--compute_dtype COMPUTE_DTYPE` | compute dtype for 4-bit. Valid options: bfloat16, float16, float32. | |
|
| `--quant_type QUANT_TYPE` | quant_type for 4-bit. Valid options: nf4, fp4. | |
|
| `--use_double_quant` | use_double_quant for 4-bit. | |
|
|
|
#### GGML/GGUF (for llama.cpp and ctransformers) |
|
|
|
| Flag | Description | |
|
|-------------|-------------| |
|
| `--threads` | Number of threads to use. | |
|
| `--n_batch` | Maximum number of prompt tokens to batch together when calling llama_eval. | |
|
| `--n-gpu-layers N_GPU_LAYERS` | Number of layers to offload to the GPU. Only works if llama-cpp-python was compiled with BLAS. Set this to 1000000000 to offload all layers to the GPU. | |
|
| `--n_ctx N_CTX` | Size of the prompt context. | |
|
|
|
#### llama.cpp |
|
|
|
| Flag | Description | |
|
|---------------|---------------| |
|
| `--no-mmap` | Prevent mmap from being used. | |
|
| `--mlock` | Force the system to keep the model in RAM. | |
|
| `--mul_mat_q` | Activate new mulmat kernels. | |
|
| `--cache-capacity CACHE_CAPACITY` | Maximum cache capacity. Examples: 2000MiB, 2GiB. When provided without units, bytes will be assumed. | |
|
| `--tensor_split TENSOR_SPLIT` | Split the model across multiple GPUs, comma-separated list of proportions, e.g. 18,17 | |
|
| `--llama_cpp_seed SEED` | Seed for llama-cpp models. Default 0 (random). | |
|
| `--n_gqa N_GQA` | GGML only (not used by GGUF): Grouped-Query Attention. Must be 8 for llama-2 70b. | |
|
| `--rms_norm_eps RMS_NORM_EPS` | GGML only (not used by GGUF): 5e-6 is a good value for llama-2 models. | |
|
| `--cpu` | Use the CPU version of llama-cpp-python instead of the GPU-accelerated version. | |
|
|`--cfg-cache` | llamacpp_HF: Create an additional cache for CFG negative prompts. | |
|
|
|
#### ctransformers |
|
|
|
| Flag | Description | |
|
|-------------|-------------| |
|
| `--model_type MODEL_TYPE` | Model type of pre-quantized model. Currently gpt2, gptj, gptneox, falcon, llama, mpt, starcoder (gptbigcode), dollyv2, and replit are supported. | |
|
|
|
#### AutoGPTQ |
|
|
|
| Flag | Description | |
|
|------------------|-------------| |
|
| `--triton` | Use triton. | |
|
| `--no_inject_fused_attention` | Disable the use of fused attention, which will use less VRAM at the cost of slower inference. | |
|
| `--no_inject_fused_mlp` | Triton mode only: disable the use of fused MLP, which will use less VRAM at the cost of slower inference. | |
|
| `--no_use_cuda_fp16` | This can make models faster on some systems. | |
|
| `--desc_act` | For models that don't have a quantize_config.json, this parameter is used to define whether to set desc_act or not in BaseQuantizeConfig. | |
|
| `--disable_exllama` | Disable ExLlama kernel, which can improve inference speed on some systems. | |
|
|
|
#### ExLlama |
|
|
|
| Flag | Description | |
|
|------------------|-------------| |
|
|`--gpu-split` | Comma-separated list of VRAM (in GB) to use per GPU device for model layers, e.g. `20,7,7` | |
|
|`--max_seq_len MAX_SEQ_LEN` | Maximum sequence length. | |
|
|`--cfg-cache` | ExLlama_HF: Create an additional cache for CFG negative prompts. Necessary to use CFG with that loader, but not necessary for CFG with base ExLlama. | |
|
|
|
#### GPTQ-for-LLaMa |
|
|
|
| Flag | Description | |
|
|---------------------------|-------------| |
|
| `--wbits WBITS` | Load a pre-quantized model with specified precision in bits. 2, 3, 4 and 8 are supported. | |
|
| `--model_type MODEL_TYPE` | Model type of pre-quantized model. Currently LLaMA, OPT, and GPT-J are supported. | |
|
| `--groupsize GROUPSIZE` | Group size. | |
|
| `--pre_layer PRE_LAYER [PRE_LAYER ...]` | The number of layers to allocate to the GPU. Setting this parameter enables CPU offloading for 4-bit models. For multi-gpu, write the numbers separated by spaces, eg `--pre_layer 30 60`. | |
|
| `--checkpoint CHECKPOINT` | The path to the quantized checkpoint file. If not specified, it will be automatically detected. | |
|
| `--monkey-patch` | Apply the monkey patch for using LoRAs with quantized models. |
|
|
|
#### DeepSpeed |
|
|
|
| Flag | Description | |
|
|---------------------------------------|-------------| |
|
| `--deepspeed` | Enable the use of DeepSpeed ZeRO-3 for inference via the Transformers integration. | |
|
| `--nvme-offload-dir NVME_OFFLOAD_DIR` | DeepSpeed: Directory to use for ZeRO-3 NVME offloading. | |
|
| `--local_rank LOCAL_RANK` | DeepSpeed: Optional argument for distributed setups. | |
|
|
|
#### RWKV |
|
|
|
| Flag | Description | |
|
|---------------------------------|-------------| |
|
| `--rwkv-strategy RWKV_STRATEGY` | RWKV: The strategy to use while loading the model. Examples: "cpu fp32", "cuda fp16", "cuda fp16i8". | |
|
| `--rwkv-cuda-on` | RWKV: Compile the CUDA kernel for better performance. | |
|
|
|
#### RoPE (for llama.cpp, ExLlama, and transformers) |
|
|
|
| Flag | Description | |
|
|------------------|-------------| |
|
| `--alpha_value ALPHA_VALUE` | Positional embeddings alpha factor for NTK RoPE scaling. Use either this or compress_pos_emb, not both. | |
|
| `--rope_freq_base ROPE_FREQ_BASE` | If greater than 0, will be used instead of alpha_value. Those two are related by rope_freq_base = 10000 * alpha_value ^ (64 / 63). | |
|
| `--compress_pos_emb COMPRESS_POS_EMB` | Positional embeddings compression factor. Should be set to (context length) / (model's original context length). Equal to 1/rope_freq_scale. | |
|
|
|
#### Gradio |
|
|
|
| Flag | Description | |
|
|---------------------------------------|-------------| |
|
| `--listen` | Make the web UI reachable from your local network. | |
|
| `--listen-host LISTEN_HOST` | The hostname that the server will use. | |
|
| `--listen-port LISTEN_PORT` | The listening port that the server will use. | |
|
| `--share` | Create a public URL. This is useful for running the web UI on Google Colab or similar. | |
|
| `--auto-launch` | Open the web UI in the default browser upon launch. | |
|
| `--gradio-auth USER:PWD` | set gradio authentication like "username:password"; or comma-delimit multiple like "u1:p1,u2:p2,u3:p3" | |
|
| `--gradio-auth-path GRADIO_AUTH_PATH` | Set the gradio authentication file path. The file should contain one or more user:password pairs in this format: "u1:p1,u2:p2,u3:p3" | |
|
| `--ssl-keyfile SSL_KEYFILE` | The path to the SSL certificate key file. | |
|
| `--ssl-certfile SSL_CERTFILE` | The path to the SSL certificate cert file. | |
|
|
|
#### API |
|
|
|
| Flag | Description | |
|
|---------------------------------------|-------------| |
|
| `--api` | Enable the API extension. | |
|
| `--public-api` | Create a public URL for the API using Cloudfare. | |
|
| `--public-api-id PUBLIC_API_ID` | Tunnel ID for named Cloudflare Tunnel. Use together with public-api option. | |
|
| `--api-blocking-port BLOCKING_PORT` | The listening port for the blocking API. | |
|
| `--api-streaming-port STREAMING_PORT` | The listening port for the streaming API. | |
|
|
|
#### Multimodal |
|
|
|
| Flag | Description | |
|
|---------------------------------------|-------------| |
|
| `--multimodal-pipeline PIPELINE` | The multimodal pipeline to use. Examples: `llava-7b`, `llava-13b`. | |
|
|
|
## Presets |
|
|
|
Inference settings presets can be created under `presets/` as yaml files. These files are detected automatically at startup. |
|
|
|
The presets that are included by default are the result of a contest that received 7215 votes. More details can be found [here](https://github.com/oobabooga/oobabooga.github.io/blob/main/arena/results.md). |
|
|
|
## Contributing |
|
|
|
If you would like to contribute to the project, check out the [Contributing guidelines](https://github.com/oobabooga/text-generation-webui/wiki/Contributing-guidelines). |
|
|
|
## Community |
|
|
|
* Subreddit: https://www.reddit.com/r/oobabooga/ |
|
* Discord: https://discord.gg/jwZCF2dPQN |
|
|
|
## Acknowledgment |
|
|
|
In August 2023, [Andreessen Horowitz](https://a16z.com/) (a16z) provided a generous grant to encourage and support my independent work on this project. I am **extremely** grateful for their trust and recognition, which will allow me to dedicate more time towards realizing the full potential of text-generation-webui. |
|
|