Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
"use server" | |
import { v4 as uuidv4 } from "uuid" | |
import Replicate from "replicate" | |
import { RenderRequest, RenderedScene, RenderingEngine } from "@/types" | |
import { generateSeed } from "@/lib/generateSeed" | |
import { sleep } from "@/lib/sleep" | |
const renderingEngine = `${process.env.RENDERING_ENGINE || ""}` as RenderingEngine | |
// TODO: we should split Hugging Face and Replicate backends into separate files | |
const huggingFaceToken = `${process.env.AUTH_HF_API_TOKEN || ""}` | |
const huggingFaceInferenceEndpointUrl = `${process.env.RENDERING_HF_INFERENCE_ENDPOINT_URL || ""}` | |
const huggingFaceInferenceApiBaseModel = `${process.env.RENDERING_HF_INFERENCE_API_BASE_MODEL || ""}` | |
const huggingFaceInferenceApiRefinerModel = `${process.env.RENDERING_HF_INFERENCE_API_REFINER_MODEL || ""}` | |
const replicateToken = `${process.env.AUTH_REPLICATE_API_TOKEN || ""}` | |
const replicateModel = `${process.env.RENDERING_REPLICATE_API_MODEL || ""}` | |
const replicateModelVersion = `${process.env.RENDERING_REPLICATE_API_MODEL_VERSION || ""}` | |
const videochainToken = `${process.env.AUTH_VIDEOCHAIN_API_TOKEN || ""}` | |
const videochainApiUrl = `${process.env.RENDERING_VIDEOCHAIN_API_URL || ""}` | |
export async function newRender({ | |
prompt, | |
// negativePrompt, | |
width, | |
height, | |
withCache | |
}: { | |
prompt: string | |
// negativePrompt: string[] | |
width: number | |
height: number | |
withCache: boolean | |
}) { | |
// throw new Error("Planned maintenance") | |
if (!prompt) { | |
const error = `cannot call the rendering API without a prompt, aborting..` | |
console.error(error) | |
throw new Error(error) | |
} | |
let defaulResult: RenderedScene = { | |
renderId: "", | |
status: "error", | |
assetUrl: "", | |
alt: prompt || "", | |
maskUrl: "", | |
error: "failed to fetch the data", | |
segments: [] | |
} | |
const nbInferenceSteps = 30 | |
const guidanceScale = 9 | |
try { | |
if (renderingEngine === "REPLICATE") { | |
if (!replicateToken) { | |
throw new Error(`you need to configure your REPLICATE_API_TOKEN in order to use the REPLICATE rendering engine`) | |
} | |
if (!replicateModel) { | |
throw new Error(`you need to configure your REPLICATE_API_MODEL in order to use the REPLICATE rendering engine`) | |
} | |
if (!replicateModelVersion) { | |
throw new Error(`you need to configure your REPLICATE_API_MODEL_VERSION in order to use the REPLICATE rendering engine`) | |
} | |
const replicate = new Replicate({ auth: replicateToken }) | |
const seed = generateSeed() | |
const prediction = await replicate.predictions.create({ | |
version: replicateModelVersion, | |
input: { | |
prompt: [ | |
"beautiful", | |
// "intricate details", | |
prompt, | |
"award winning", | |
"high resolution" | |
].join(", "), | |
width, | |
height, | |
seed | |
} | |
}) | |
// no need to reply straight away as images take time to generate, this isn't instantaneous | |
// also our friends at Replicate won't like it if we spam them with requests | |
await sleep(4000) | |
return { | |
renderId: prediction.id, | |
status: "pending", | |
assetUrl: "", | |
alt: prompt, | |
error: prediction.error, | |
maskUrl: "", | |
segments: [] | |
} as RenderedScene | |
} if (renderingEngine === "INFERENCE_ENDPOINT" || renderingEngine === "INFERENCE_API") { | |
if (!huggingFaceToken) { | |
throw new Error(`you need to configure your HF_API_TOKEN in order to use the ${renderingEngine} rendering engine`) | |
} | |
if (renderingEngine === "INFERENCE_ENDPOINT" && !huggingFaceInferenceEndpointUrl) { | |
throw new Error(`you need to configure your RENDERING_HF_INFERENCE_ENDPOINT_URL in order to use the INFERENCE_ENDPOINT rendering engine`) | |
} | |
if (renderingEngine === "INFERENCE_API" && !huggingFaceInferenceApiBaseModel) { | |
throw new Error(`you need to configure your RENDERING_HF_INFERENCE_API_BASE_MODEL in order to use the INFERENCE_API rendering engine`) | |
} | |
if (renderingEngine === "INFERENCE_API" && !huggingFaceInferenceApiRefinerModel) { | |
throw new Error(`you need to configure your RENDERING_HF_INFERENCE_API_REFINER_MODEL in order to use the INFERENCE_API rendering engine`) | |
} | |
const baseModelUrl = renderingEngine === "INFERENCE_ENDPOINT" | |
? huggingFaceInferenceEndpointUrl | |
: `https://api-inference.huggingface.co/models/${huggingFaceInferenceApiBaseModel}` | |
const positivePrompt = [ | |
"beautiful", | |
// "intricate details", | |
prompt, | |
"award winning", | |
"high resolution" | |
].join(", ") | |
const res = await fetch(baseModelUrl, { | |
method: "POST", | |
headers: { | |
"Content-Type": "application/json", | |
Authorization: `Bearer ${huggingFaceToken}`, | |
}, | |
body: JSON.stringify({ | |
inputs: positivePrompt, | |
parameters: { | |
num_inference_steps: nbInferenceSteps, | |
guidance_scale: guidanceScale, | |
width, | |
height, | |
}, | |
// this doesn't do what you think it does | |
use_cache: false, // withCache, | |
}), | |
cache: "no-store", | |
// we can also use this (see https://vercel.com/blog/vercel-cache-api-nextjs-cache) | |
// next: { revalidate: 1 } | |
}) | |
// Recommendation: handle errors | |
if (res.status !== 200) { | |
const content = await res.text() | |
console.error(content) | |
// This will activate the closest `error.js` Error Boundary | |
throw new Error('Failed to fetch data') | |
} | |
const blob = await res.arrayBuffer() | |
const contentType = res.headers.get('content-type') | |
let assetUrl = `data:${contentType};base64,${Buffer.from(blob).toString('base64')}` | |
// note: there is no "refiner" step yet for custom inference endpoint | |
// you probably don't need it anyway, as you probably want to deploy an all-in-one model instead for perf reasons | |
if (renderingEngine === "INFERENCE_API") { | |
try { | |
const refinerModelUrl = `https://api-inference.huggingface.co/models/${huggingFaceInferenceApiRefinerModel}` | |
const res = await fetch(refinerModelUrl, { | |
method: "POST", | |
headers: { | |
"Content-Type": "application/json", | |
Authorization: `Bearer ${huggingFaceToken}`, | |
}, | |
body: JSON.stringify({ | |
inputs: Buffer.from(blob).toString('base64'), | |
parameters: { | |
prompt: positivePrompt, | |
num_inference_steps: nbInferenceSteps, | |
guidance_scale: guidanceScale, | |
width, | |
height, | |
}, | |
// this doesn't do what you think it does | |
use_cache: false, // withCache, | |
}), | |
cache: "no-store", | |
// we can also use this (see https://vercel.com/blog/vercel-cache-api-nextjs-cache) | |
// next: { revalidate: 1 } | |
}) | |
// Recommendation: handle errors | |
if (res.status !== 200) { | |
const content = await res.json() | |
// if (content.error.include("currently loading")) { | |
// console.log("refiner isn't ready yet") | |
throw new Error(content?.error || 'Failed to fetch data') | |
} | |
const refinedBlob = await res.arrayBuffer() | |
const contentType = res.headers.get('content-type') | |
assetUrl = `data:${contentType};base64,${Buffer.from(refinedBlob).toString('base64')}` | |
} catch (err) { | |
console.log(`Refiner step failed, but this is not a blocker. Error details: ${err}`) | |
} | |
} | |
return { | |
renderId: uuidv4(), | |
status: "completed", | |
assetUrl, | |
alt: prompt, | |
error: "", | |
maskUrl: "", | |
segments: [] | |
} as RenderedScene | |
} else { | |
const res = await fetch(`${videochainApiUrl}${videochainApiUrl.endsWith("/") ? "" : "/"}render`, { | |
method: "POST", | |
headers: { | |
Accept: "application/json", | |
"Content-Type": "application/json", | |
Authorization: `Bearer ${videochainToken}`, | |
}, | |
body: JSON.stringify({ | |
prompt, | |
// negativePrompt, unused for now | |
nbFrames: 1, | |
nbSteps: nbInferenceSteps, // 20 = fast, 30 = better, 50 = best | |
actionnables: [], // ["text block"], | |
segmentation: "disabled", // "firstframe", // one day we will remove this param, to make it automatic | |
width, | |
height, | |
// no need to upscale right now as we generate tiny panels | |
// maybe later we can provide an "export" button to PDF | |
// unfortunately there are too many requests for upscaling, | |
// the server is always down | |
upscalingFactor: 1, // 2, | |
// analyzing doesn't work yet, it seems.. | |
analyze: false, // analyze: true, | |
cache: "ignore" | |
} as Partial<RenderRequest>), | |
cache: 'no-store', | |
// we can also use this (see https://vercel.com/blog/vercel-cache-api-nextjs-cache) | |
// next: { revalidate: 1 } | |
}) | |
if (res.status !== 200) { | |
throw new Error('Failed to fetch data') | |
} | |
const response = (await res.json()) as RenderedScene | |
return response | |
} | |
} catch (err) { | |
console.error(err) | |
return defaulResult | |
} | |
} | |
export async function getRender(renderId: string) { | |
if (!renderId) { | |
const error = `cannot call the rendering API without a renderId, aborting..` | |
console.error(error) | |
throw new Error(error) | |
} | |
let defaulResult: RenderedScene = { | |
renderId: "", | |
status: "pending", | |
assetUrl: "", | |
alt: "", | |
maskUrl: "", | |
error: "failed to fetch the data", | |
segments: [] | |
} | |
try { | |
if (renderingEngine === "REPLICATE") { | |
if (!replicateToken) { | |
throw new Error(`you need to configure your AUTH_REPLICATE_API_TOKEN in order to use the REPLICATE rendering engine`) | |
} | |
if (!replicateModel) { | |
throw new Error(`you need to configure your RENDERING_REPLICATE_API_MODEL in order to use the REPLICATE rendering engine`) | |
} | |
const res = await fetch(`https://api.replicate.com/v1/predictions/${renderId}`, { | |
method: "GET", | |
headers: { | |
Authorization: `Token ${replicateToken}`, | |
}, | |
cache: 'no-store', | |
// we can also use this (see https://vercel.com/blog/vercel-cache-api-nextjs-cache) | |
// next: { revalidate: 1 } | |
}) | |
// Recommendation: handle errors | |
if (res.status !== 200) { | |
// This will activate the closest `error.js` Error Boundary | |
throw new Error('Failed to fetch data') | |
} | |
const response = (await res.json()) as any | |
return { | |
renderId, | |
status: response?.error ? "error" : response?.status === "succeeded" ? "completed" : "pending", | |
assetUrl: `${response?.output || ""}`, | |
alt: `${response?.input?.prompt || ""}`, | |
error: `${response?.error || ""}`, | |
maskUrl: "", | |
segments: [] | |
} as RenderedScene | |
} else { | |
const res = await fetch(`${videochainApiUrl}/render/${renderId}`, { | |
method: "GET", | |
headers: { | |
Accept: "application/json", | |
"Content-Type": "application/json", | |
Authorization: `Bearer ${videochainToken}`, | |
}, | |
cache: 'no-store', | |
// we can also use this (see https://vercel.com/blog/vercel-cache-api-nextjs-cache) | |
// next: { revalidate: 1 } | |
}) | |
if (res.status !== 200) { | |
throw new Error('Failed to fetch data') | |
} | |
const response = (await res.json()) as RenderedScene | |
return response | |
} | |
} catch (err) { | |
console.error(err) | |
defaulResult.status = "error" | |
defaulResult.error = `${err}` | |
return defaulResult | |
} | |
} | |
export async function upscaleImage(image: string): Promise<{ | |
assetUrl: string | |
error: string | |
}> { | |
if (!image) { | |
const error = `cannot call the rendering API without an image, aborting..` | |
console.error(error) | |
throw new Error(error) | |
} | |
let defaulResult = { | |
assetUrl: "", | |
error: "failed to fetch the data", | |
} | |
try { | |
const res = await fetch(`${videochainApiUrl}/upscale`, { | |
method: "POST", | |
headers: { | |
Accept: "application/json", | |
"Content-Type": "application/json", | |
Authorization: `Bearer ${videochainToken}`, | |
}, | |
cache: 'no-store', | |
body: JSON.stringify({ image, factor: 3 }) | |
// we can also use this (see https://vercel.com/blog/vercel-cache-api-nextjs-cache) | |
// next: { revalidate: 1 } | |
}) | |
if (res.status !== 200) { | |
throw new Error('Failed to fetch data') | |
} | |
const response = (await res.json()) as { | |
assetUrl: string | |
error: string | |
} | |
return response | |
} catch (err) { | |
console.error(err) | |
return defaulResult | |
} | |
} | |