Spaces:
Paused
Paused
##################################################### | |
### DOCUMENT PROCESSOR [PDF READER] | |
##################################################### | |
# Jonathan Wang | |
# ABOUT: | |
# This project creates an app to chat with PDFs. | |
# This is the PDF READER. | |
# It converts a PDF into LlamaIndex nodes | |
# using UnstructuredIO. | |
##################################################### | |
# TODO Board: | |
# I don't think the current code is elegent... :( | |
# TODO: Replace chunk_by_header with a custom solution replicating bySimilarity | |
# https://docs.unstructured.io/api-reference/api-services/chunking#by-similarity-chunking-strategy | |
# Some hybrid thing... | |
# Come up with a awy to handle summarizing images and tables using MultiModalLLM after the processing into nodes. | |
# TODO: Put this into PDFReaderUtilities? Along with the other functions for stuff like email? | |
# Investigate PDFPlumber as a backup/alternative for Unstructured. | |
# `https://github.com/jsvine/pdfplumber` | |
# nevermind, this is essentially pdfminer.six but nicer | |
# Chunk hierarchy from https://www.reddit.com/r/LocalLLaMA/comments/1dpb9ow/how_we_chunk_turning_pdfs_into_hierarchical/ | |
# Investigate document parsing algorithms from https://github.com/BobLd/DocumentLayoutAnalysis?tab=readme-ov-file | |
# Investigate document parsing algorithms from https://github.com/Filimoa/open-parse?tab=readme-ov-file | |
# Competition: | |
# https://github.com/infiniflow/ragflow | |
# https://github.com/deepdoctection/deepdoctection | |
##################################################### | |
## IMPORTS | |
import os | |
import re | |
import regex | |
from copy import deepcopy | |
from abc import ABC, abstractmethod | |
from typing import Any, List, Tuple, IO, Optional, Type, Generic, TypeVar | |
from llama_index.core.bridge.pydantic import Field | |
import numpy as np | |
from io import BytesIO | |
from base64 import b64encode, b64decode | |
from PIL import Image as PILImage | |
# from pdf_reader_utils import clean_pdf_chunk, dedupe_title_chunks, combine_listitem_chunks | |
# Unstructured Document Parsing | |
from unstructured.partition.pdf import partition_pdf | |
# from unstructured.cleaners.core import clean_extra_whitespace, group_broken_paragraphs #, clean_ordered_bullets, clean_bullets, clean_dashes | |
# from unstructured.chunking.title import chunk_by_title | |
# Unstructured Element Types | |
from unstructured.documents import elements, email_elements | |
from unstructured.partition.utils.constants import PartitionStrategy | |
# Llamaindex Nodes | |
from llama_index.core.settings import Settings | |
from llama_index.core.schema import Document, BaseNode, TextNode, ImageNode, NodeRelationship, RelatedNodeInfo | |
from llama_index.core.readers.base import BaseReader | |
from llama_index.core.base.embeddings.base import BaseEmbedding | |
from llama_index.core.node_parser import NodeParser | |
# Parallelism for cleaning chunks | |
from joblib import Parallel, delayed | |
## Lazy Imports | |
# import nltk | |
##################################################### | |
# Additional padding around the PDF extracted images | |
PDF_IMAGE_HORIZONTAL_PADDING = 20 | |
PDF_IMAGE_VERTICAL_PADDING = 20 | |
os.environ['EXTRACT_IMAGE_BLOCK_CROP_HORIZONTAL_PAD'] = str(PDF_IMAGE_HORIZONTAL_PADDING) | |
os.environ['EXTRACT_IMAGE_BLOCK_CROP_VERTICAL_PAD'] = str(PDF_IMAGE_VERTICAL_PADDING) | |
# class TextReader(BaseReader): | |
# def __init__(self, text: str) -> None: | |
# """Init params.""" | |
# self.text = text | |
# class ImageReader(BaseReader): | |
# def __init__(self, image: Any) -> None: | |
# """Init params.""" | |
# self.image = image | |
GenericNode = TypeVar("GenericNode", bound=BaseNode) # https://mypy.readthedocs.io/en/stable/generics.html | |
class UnstructuredPDFReader(): | |
# Yes, we could inherit from LlamaIndex BaseReader even though I don't think it's a good idea. | |
# Have you seen the Llamaindex Base Reader? It's silly. """OOP""" | |
# https://docs.llamaindex.ai/en/stable/api_reference/readers/ | |
# here I'm basically cargo culting off the (not-very-good) pre-built Llamaindex one. | |
# https://github.com/run-llama/llama_index/blob/main/llama-index-integrations/readers/llama-index-readers-file/llama_index/readers/file/unstructured/base.py | |
# yes I do want to bind these to the class. | |
# you better not be changing the embedding model or node parser on me across different PDFReaders. that's absurd. | |
# embed_model: BaseEmbedding | |
# _node_parser: NodeParser# = Field( | |
# description="Node parser to run on each Unstructured Title Chunk", | |
# default=Settings.node_parser, | |
# ) | |
_max_characters: int# = Field( | |
# description="The maximum number of characters in a node", | |
# default=8192, | |
# ) | |
_new_after_n_chars: int #= Field( | |
# description="The number of characters after which a new node is created", | |
# default=1024, | |
# ) | |
_overlap_n_chars: int #= Field( | |
# description="The number of characters to overlap between nodes", | |
# default=128, | |
# ) | |
_overlap: int #= Field( | |
# description="The number of characters to overlap between nodes", | |
# default=128, | |
# ) | |
_overlap_all: bool #= Field( | |
# description="Whether to overlap all nodes", | |
# default=False, | |
# ) | |
_multipage_sections: bool #= Field( | |
# description="Whether to include multipage sections", | |
# default=False, | |
# ) | |
## TODO: Fix this big ball of primiatives and turn it into a class. | |
def __init__( | |
self, | |
# node_parser: Optional[NodeParser], # Suggest using a SemanticNodeParser. | |
max_characters: int = 2048, | |
new_after_n_chars: int = 512, | |
overlap_n_chars: int = 128, | |
overlap: int = 128, | |
overlap_all: bool = False, | |
multipage_sections: bool = True, | |
**kwargs: Any | |
) -> None: | |
# node_parser = node_parser or Settings.node_parser | |
"""Init params.""" | |
super().__init__(**kwargs) | |
self._max_characters = max_characters | |
self._new_after_n_chars = new_after_n_chars | |
self._overlap_n_chars = overlap_n_chars | |
self._overlap = overlap | |
self._overlap_all = overlap_all | |
self._multipage_sections = multipage_sections | |
# self._node_parser = node_parser or Settings.node_parser # set node parser to run on each Unstructured Title Chunk | |
# Prerequisites for Unstructured.io to work | |
# import nltk | |
# nltk.data.path = ['./nltk_data'] | |
# try: | |
# if not nltk.data.find("tokenizers/punkt"): | |
# # nltk.download("punkt") | |
# print("Can't find punkt.") | |
# except Exception as e: | |
# # nltk.download("punkt") | |
# print(e) | |
# try: | |
# if not nltk.data.find("taggers/averaged_perceptron_tagger"): | |
# # nltk.download("averaged_perceptron_tagger") | |
# print("Can't find averaged_perceptron_tagger.") | |
# except Exception as e: | |
# # nltk.download("averaged_perceptron_tagger") | |
# print(e) | |
# """DATA LOADING FUNCTIONS""" | |
def _node_rel_prev_next(self, prev_node: GenericNode, next_node: GenericNode) -> Tuple[GenericNode, GenericNode]: | |
"""Update pre-next node relationships between two nodes.""" | |
prev_node.relationships[NodeRelationship.NEXT] = RelatedNodeInfo( | |
node_id=next_node.node_id, | |
metadata={"filename": next_node.metadata['filename']} | |
) | |
next_node.relationships[NodeRelationship.PREVIOUS] = RelatedNodeInfo( | |
node_id=prev_node.node_id, | |
metadata={"filename": prev_node.metadata['filename']} | |
) | |
return (prev_node, next_node) | |
def _node_rel_parent_child(self, parent_node: GenericNode, child_node: GenericNode) -> Tuple[GenericNode, GenericNode]: | |
"""Update parent-child node relationships between two nodes.""" | |
parent_node.relationships[NodeRelationship.CHILD] = RelatedNodeInfo( | |
node_id=child_node.node_id, | |
metadata={"filename": child_node.metadata['filename']} | |
) | |
child_node.relationships[NodeRelationship.PARENT] = RelatedNodeInfo( | |
node_id=parent_node.node_id, | |
metadata={"filename": parent_node.metadata['filename']} | |
) | |
return (parent_node, child_node) | |
def _handle_metadata( | |
self, | |
pdf_chunk: elements.Element, | |
node: GenericNode, | |
kept_metadata: List[str] = [ | |
'filename', 'file_directory', 'coordinates', | |
'page_number', 'page_name', 'section', | |
'sent_from', 'sent_to', 'subject', | |
'parent_id', 'category_depth', | |
'text_as_html', 'languages', | |
'emphasized_text_contents', 'link_texts', 'link_urls', | |
'is_continuation', 'detection_class_prob', | |
]) -> GenericNode: | |
"""Add common unstructured element metadata to LlamaIndex node.""" | |
pdf_chunk_metadata = pdf_chunk.metadata.to_dict() if pdf_chunk.metadata else {} | |
current_kept_metadata = deepcopy(kept_metadata) | |
# Handle some interesting keys | |
node.metadata['type'] = pdf_chunk.category | |
if (('filename' in current_kept_metadata) and ('filename' in pdf_chunk_metadata) and ('file_directory' in pdf_chunk_metadata)): | |
filename = os.path.join(str(pdf_chunk_metadata['file_directory']), str(pdf_chunk_metadata['filename'])) | |
node.metadata['filename'] = filename | |
current_kept_metadata.remove('file_directory') if ('file_directory' in current_kept_metadata) else None | |
if (('text_as_html' in current_kept_metadata) and ('text_as_html' in pdf_chunk_metadata)): | |
node.metadata['orignal_table_text'] = getattr(node, 'text', '') | |
node.text = pdf_chunk_metadata['text_as_html'] | |
current_kept_metadata.remove('text_as_html') | |
if (('coordinates' in current_kept_metadata) and (pdf_chunk_metadata.get('coordinates') is not None)): | |
node.metadata['coordinates'] = pdf_chunk_metadata['coordinates'] | |
current_kept_metadata.remove('coordinates') | |
if (('page_number' in current_kept_metadata) and ('page_number' in pdf_chunk_metadata)): | |
node.metadata['page_number'] = [pdf_chunk_metadata['page_number']] # save as list to allow for multiple pages | |
current_kept_metadata.remove('page_number') | |
if (('page_name' in current_kept_metadata) and ('page_name' in pdf_chunk_metadata)): | |
node.metadata['page_name'] = [pdf_chunk_metadata['page_name']] # save as list to allow for multiple sheets | |
current_kept_metadata.remove('page_name') | |
# Handle the remaining keys | |
for key in set(current_kept_metadata).intersection(set(pdf_chunk_metadata.keys())): | |
node.metadata[key] = pdf_chunk_metadata[key] | |
return node | |
def _handle_text_chunk(self, pdf_text_chunk: elements.Element) -> TextNode: | |
"""Given a text chunk from Unstructured, convert it to a TextNode for LlamaIndex. | |
Args: | |
pdf_text_chunk (elements.Element): Input text chunk from Unstructured. | |
Returns: | |
TextNode: LlamaIndex TextNode which saves the text as HTML for structure. | |
""" | |
new_node = TextNode( | |
text=pdf_text_chunk.text, | |
id_=pdf_text_chunk.id, | |
excluded_llm_metadata_keys=['type', 'parent_id', 'depth', 'filename', 'coordinates', 'link_texts', 'link_urls', 'link_start_indexes', 'orig_nodes', 'orignal_table_text', 'languages', 'detection_class_prob', 'keyword_metadata'], | |
excluded_embed_metadata_keys=['type', 'parent_id', 'depth', 'filename', 'coordinates', 'page number', 'original_text', 'window', 'link_texts', 'link_urls', 'link_start_indexes', 'orig_nodes', 'orignal_table_text', 'languages', 'detection_class_prob'] | |
) | |
new_node = self._handle_metadata(pdf_text_chunk, new_node) | |
return (new_node) | |
def _handle_table_chunk(self, pdf_table_chunk: elements.Table | elements.TableChunk) -> TextNode: | |
"""Given a table chunk from Unstructured, convert it to a TextNode for LlamaIndex. | |
Args: | |
pdf_table_chunk (elements.Table | elements.TableChunk): Input table chunk from Unstructured | |
Returns: | |
TextNode: LlamaIndex TextNode which saves the table as HTML for structure. | |
NOTE: You will need to get the summary of the table for better performance. | |
""" | |
new_node = TextNode( | |
text=pdf_table_chunk.metadata.text_as_html if pdf_table_chunk.metadata.text_as_html else pdf_table_chunk.text, | |
id_=pdf_table_chunk.id, | |
excluded_llm_metadata_keys=['type', 'parent_id', 'depth', 'filename', 'coordinates', 'link_texts', 'link_urls', 'link_start_indexes', 'orig_nodes', 'orignal_table_text', 'languages', 'detection_class_prob', 'keyword_metadata'], | |
excluded_embed_metadata_keys=['type', 'parent_id', 'depth', 'filename', 'coordinates', 'page number', 'original_text', 'window', 'link_texts', 'link_urls', 'link_start_indexes', 'orig_nodes', 'orignal_table_text', 'languages', 'detection_class_prob'] | |
) | |
new_node = self._handle_metadata(pdf_table_chunk, new_node) | |
return (new_node) | |
def _handle_image_chunk(self, pdf_image_chunk: elements.Element) -> ImageNode: | |
"""Given an image chunk from UnstructuredIO, read it in and convert it into a Llamaindex ImageNode. | |
Args: | |
pdf_image_chunk (elements.Element): The input image element from UnstructuredIO. We'll allow all types, just in case you want to process some weird chunks. | |
Returns: | |
ImageNode: The image saved as a Llamaindex ImageNode. | |
""" | |
pdf_image_chunk_data_available = pdf_image_chunk.metadata.to_dict() | |
# Check for either saved image_path or image_base64/image_mime_type | |
if (('image_path' not in pdf_image_chunk_data_available) and ('image_base64' not in pdf_image_chunk_data_available)): | |
raise Exception('Image chunk does not have either image_path or image_base64/image_mime_type. Are you sure this is an image?') | |
# Make the image node. | |
new_node = ImageNode( | |
text=pdf_image_chunk.text, | |
id_=pdf_image_chunk.id, | |
excluded_llm_metadata_keys=['type', 'parent_id', 'depth', 'filename', 'coordinates', 'link_texts', 'link_urls', 'link_start_indexes', 'orig_nodes', 'languages', 'detection_class_prob', 'keyword_metadata'], | |
excluded_embed_metadata_keys=['type', 'parent_id', 'depth', 'filename', 'coordinates', 'page number', 'original_text', 'window', 'link_texts', 'link_urls', 'link_start_indexes', 'orig_nodes', 'languages', 'detection_class_prob'] | |
) | |
new_node = self._handle_metadata(pdf_image_chunk, new_node) | |
# Add image data to image node | |
image = None | |
if ('image_path' in pdf_image_chunk_data_available): | |
# Save image path to image node | |
new_node.image_path = pdf_image_chunk_data_available['image_path'] | |
# Load image from path, convert to base64 | |
image_pil = PILImage.open(pdf_image_chunk_data_available['image_path']) | |
image_buffer = BytesIO() | |
image_pil.save(image_buffer, format='JPEG') | |
image = b64encode(image_buffer.getvalue()).decode('utf-8') | |
new_node.image = image | |
new_node.image_mimetype = 'image/jpeg' | |
del image_buffer, image_pil | |
elif ('image_base64' in pdf_image_chunk_data_available): | |
# Save image base64 to image node | |
new_node.image = pdf_image_chunk_data_available['image_base64'] | |
new_node.image_mimetype = pdf_image_chunk_data_available['image_mime_type'] | |
return (new_node) | |
def _handle_composite_chunk(self, pdf_composite_chunk: elements.CompositeElement) -> BaseNode: | |
"""Given a composite chunk from Unstructured, convert it into a node and handle it dependencies as well.""" | |
# Start by getting a list of all the nodes which were combined into the composite chunk. | |
# child_chunks = pdf_composite_chunk.metadata.to_dict()['orig_elements'] | |
child_chunks = pdf_composite_chunk.metadata.orig_elements or [] | |
child_nodes = [] | |
for chunk in child_chunks: | |
child_nodes.append(self._handle_chunk(chunk)) # process all the child chunks. | |
# Then build the Composite Chunk into a Node. | |
composite_node = self._handle_text_chunk(pdf_text_chunk=pdf_composite_chunk) | |
composite_node = self._handle_metadata(pdf_composite_chunk, composite_node) | |
# Set relationships between chunks. | |
for index in range(1, len(child_nodes)): | |
child_nodes[index-1], child_nodes[index] = self._node_rel_prev_next(child_nodes[index-1], child_nodes[index]) | |
for index, node in enumerate(child_nodes): | |
composite_node, child_nodes[index] = self._node_rel_parent_child(composite_node, child_nodes[index]) | |
composite_node.metadata['orig_nodes'] = child_nodes | |
composite_node.excluded_llm_metadata_keys = ['filename', 'coordinates', 'chunk_number', 'window', 'orig_nodes', 'languages', 'detection_class_prob', 'keyword_metadata'] | |
composite_node.excluded_embed_metadata_keys = ['filename', 'coordinates', 'chunk_number', 'page number', 'original_text', 'window', 'summary', 'orig_nodes', 'languages', 'detection_class_prob'] | |
return(composite_node) | |
def _handle_chunk(self, chunk: elements.Element) -> BaseNode: | |
"""Convert Unstructured element chunks to Llamaindex Node. Determine which chunk handling to use based on the element type.""" | |
# Composite (multiple nodes combined together by chunking) | |
if (isinstance(chunk, elements.CompositeElement)): | |
return (self._handle_composite_chunk(pdf_composite_chunk=chunk)) | |
# Tables | |
elif ((chunk.category == 'Table') and isinstance(chunk, (elements.Table, elements.TableChunk))): | |
return(self._handle_table_chunk(pdf_table_chunk=chunk)) | |
# Images | |
elif (any(True for chunk_info in ['image', 'image_base64', 'image_path'] if chunk_info in chunk.metadata.to_dict())): | |
return(self._handle_image_chunk(pdf_image_chunk=chunk)) | |
# Text | |
else: | |
return(self._handle_text_chunk(pdf_text_chunk=chunk)) | |
def pdf_to_chunks( | |
self, | |
file_path: Optional[str], | |
file: Optional[IO[bytes]], | |
) -> List[elements.Element]: | |
""" | |
Given the file path to a PDF, read it in with UnstructuredIO and return its elements. | |
""" | |
print("NEWPDF: Partitioning into Chunks...") | |
# 1. attempt using AUTO to have it decide. | |
# NOTE: this takes care of pdfminer, and also choses between using detectron2 vs tesseract only. | |
# However, it sometimes gets confused by PDFs where text elements are added on later, e.g., CIDs for linking, or REDACTED | |
pdf_chunks = partition_pdf( | |
filename=file_path, | |
file=file, | |
unique_element_ids=True, # UUIDs that are unique for each element | |
strategy=PartitionStrategy.HI_RES, # auto: it decides, hi_res: detectron2, but issues with multi-column, ocr_only: pytesseract, fast: pdfminer | |
hi_res_model_name='yolox', | |
include_page_breaks=False, | |
metadata_filename=file_path, | |
infer_table_structure=True, | |
extract_images_in_pdf=True, | |
extract_image_block_types=['Image', 'Table', 'Formula'], # element types to save as images | |
extract_image_block_to_payload=False, # needs to be false; we'll convert into base64 later. | |
extract_forms=False, # not currently available | |
extract_image_block_output_dir=os.path.join(os.path.dirname(os.path.abspath(__file__)), 'data/pdfimgs/') | |
) | |
# # 2. Check if it got good output. | |
# pdf_read_in_okay = self.check_pdf_read_in(pdf_file_path=pdf_file_path, pdf_file=pdf_file, pdf_chunks=pdf_chunks) | |
# if (pdf_read_in_okay): | |
# return pdf_chunks | |
# # 3. Okay, PDF didn't read in well, so we'll use the back-up strategy | |
# # According to Unstructured's Github: https://github.com/Unstructured-IO/unstructured/blob/main/unstructured/partition/pdf.py | |
# # that is "OCR_ONLY" as opposed to "HI_RES". | |
# pdf_chunks = partition_pdf( | |
# filename=pdf_file_path, | |
# file=pdf_file, | |
# strategy="ocr_only" # auto: it decides, hi_res: detectron2, but issues with multi-column, ocr_only: pytesseract, fast: pdfminer | |
# ) | |
return pdf_chunks | |
def chunks_to_nodes(self, pdf_chunks: List[elements.Element]) -> List[BaseNode]: | |
""" | |
Given a PDF from Unstructured broken by header, | |
convert them into nodes using the node_parser. | |
E.g., to have all sentences with similar meaning as a node, use the SemanticNodeParser | |
""" | |
# 0. Setup. | |
unstructured_chunk_nodes = [] | |
# Hash of node ID and index | |
node_id_to_index = {} | |
# 1. Convert each page's text to Nodes. | |
for index, chunk in enumerate(pdf_chunks): | |
# Create new node based on node type | |
new_node = self._handle_chunk(chunk) | |
# Update hash of node ID and index | |
node_id_to_index[new_node.id_] = index | |
# Add relationship to prior node | |
if (len(unstructured_chunk_nodes) > 0): | |
unstructured_chunk_nodes[-1], new_node = self._node_rel_prev_next(prev_node=unstructured_chunk_nodes[-1], next_node=new_node) | |
# Add parent-child relationships for Title Chunks | |
if (chunk.metadata.parent_id is not None): | |
# Find the index of the parent node based on parent_id | |
parent_index = node_id_to_index[chunk.metadata.parent_id] | |
if (parent_index is not None): | |
unstructured_chunk_nodes[parent_index], new_node = self._node_rel_parent_child(parent_node=unstructured_chunk_nodes[parent_index], child_node=new_node) | |
# Append to list | |
unstructured_chunk_nodes.append(new_node) | |
del node_id_to_index | |
## TODO: Move this chunk into a separate ReaderPostProcessor thing into PDFReaderUtils. Bundle in the sumamrization for tables and images into this. | |
# 2. Node Parse each page to split when new information is different | |
# NOTE: This was built for the Semantic Parser, but I guess we'll technically allow any parser here. | |
# unstructured_parsed_nodes = self._node_parser.get_nodes_from_documents(unstructured_chunk_nodes) | |
# 3. Node Attributes | |
# for index, node in enumerate(unstructured_parsed_nodes): | |
# # Keywords and Summary | |
# # node_keywords = ', '.join(pdfrutils.get_keywords(node.text, top_k=5)) | |
# # node_summary = get_t5_summary(node.text, summary_length=64) # get_t5_summary | |
# node.metadata['keywords'] = node_keywords | |
# # node.metadata['summary'] = node_summary + (("\n" + node.metadata['summary']) if node.metadata['summary'] is not None else "") | |
# # Get additional information about the node. | |
# # Email: check for address. | |
# info_types = [] | |
# if (pdfrutils.has_date(node.text)): | |
# info_types.append("date") | |
# if (pdfrutils.has_email(node.text)): | |
# info_types.append("contact email") | |
# if (pdfrutils.has_mail_addr(node.text)): | |
# info_types.append("mailing postal address") | |
# if (pdfrutils.has_phone(node.text)): | |
# info_types.append("contact phone") | |
# node.metadata['information types'] = ", ".join(info_types) | |
# node.excluded_llm_metadata_keys = ['filename', 'coordinates', 'chunk_number', 'window', 'orig_nodes'] | |
# node.excluded_embed_metadata_keys = ['filename', 'coordinates', 'chunk_number', 'page number', 'original_text', 'window', 'keywords', 'summary', 'orig_nodes'] | |
# if (index > 0): | |
# unstructured_parsed_nodes[index-1], node = self._node_rel_prev_next(unstructured_parsed_nodes[index-1], node) | |
return(unstructured_chunk_nodes) | |
# """Main user-interaction function""" | |
def load_data( | |
self, | |
file_path: Optional[str] = None, | |
file: Optional[IO[bytes]] = None | |
) -> List: #[GenericNode]: | |
"""Given a path to a PDF file, load it with Unstructured and convert it into a list of Llamaindex Base Nodes. | |
Input: | |
- pdf_file_path (str): the path to the PDF file. | |
Output: | |
- List[GenericNode]: a list of LlamaIndex nodes. Creates one node for each parsed node, for each Unstructured Title Chunk. | |
""" | |
# 1. PDF to Chunks | |
print("NEWPDF: Reading Input File...") | |
pdf_chunks = self.pdf_to_chunks(file_path=file_path, file=file) | |
# return (pdf_chunks) | |
# Chunk processing | |
# pdf_chunks = clean_pdf_chunk, dedupe_title_chunks, combine_listitem_chunks, remove_header_footer_pagenum | |
# 2. Chunks to titles | |
# TODO: I hate this, make our own chunker. | |
# pdf_titlechunks = chunk_by_title( | |
# pdf_chunks, | |
# max_characters=self._max_characters, | |
# new_after_n_chars=self._new_after_n_chars, | |
# overlap=self._overlap, | |
# overlap_all=self._overlap_all, | |
# multipage_sections=self._multipage_sections, | |
# include_orig_elements=True, | |
# combine_text_under_n_chars=self._new_after_n_chars | |
# ) | |
# 3. Cleaning | |
# pdf_titlechunks = Parallel(n_jobs=max(int(os.cpu_count())-1, 1))( # type: ignore | |
# delayed(self.clean_pdf_chunk)(chunk) for chunk in pdf_chunks # pdf_titlechunks | |
# ) | |
# pdf_titlechunks = list(pdf_titlechunks) | |
# 4. Headlines to llamaindex nodes | |
print("NEWPDF: Converting chunks to nodes...") | |
parsed_chunks = self.chunks_to_nodes(pdf_chunks) | |
return (parsed_chunks) |